MIDTERM EXAMINATION

Answer two of the following three questions.

1. Consider an economy with two infinitely lived consumers. There is one good in each period. Consumer $i, i=1,2$, has the utility function

$$
\sum_{t=0}^{\infty} \beta^{t} \log c_{t}^{i} .
$$

Here $\beta, 0<\beta<1$, is the common discount factor. Each of the consumers is endowed with a sequence of goods:

$$
\begin{aligned}
& \left(w_{0}^{1}, w_{1}^{1}, w_{2}^{1}, w_{3}^{1}, \ldots\right)=(2,2,2,2, \ldots) \\
& \left(w_{0}^{2}, w_{1}^{2}, w_{2}^{2}, w_{3}^{2}, \ldots\right)=(1,4,1,4, \ldots)
\end{aligned}
$$

There is no production or storage.
(a) Describe an Arrow-Debreu market structure for this economy, explaining when markets are open, who trades with whom, and so on. Define an Arrow-Debreu equilibrium for this economy.
(b) Describe a sequential market structures for this economy, explaining when markets are open, who trades with whom, and so on. Define a sequential markets equilibrium for this economy.
(c) Carefully state a proposition or propositions that establish the essential equivalence of the equilibrium concept in part a with that in part b. Be sure to specify the relationships between the objects in the Arrow-Debreu equilibrium and those in the sequential markets equilibrium. (You do not have to prove these propositions.)
(d) Calculate the Arrow-Debreu equilibrium for this economy. (This equilibrium is unique up to a normalization of prices, but you do not have to prove this fact.) Use this answer and the answer to part c to calculate the sequential markets equilibrium.
(e) Suppose now that there is a third consumer. Consumer 3 has the same utility function

$$
\sum_{t=0}^{\infty} \beta^{t} \log c_{t}^{3},
$$

and has the endowment sequence

$$
\left(w_{0}^{3}, w_{1}^{3}, w_{2}^{3}, w_{3}^{3}, \ldots\right)=(4,1,4,1, \ldots) .
$$

Define a sequential markets equilibrium.
2. Consider an overlapping generations economy in which the representative consumer born in period $t, t=1,2, \ldots$, has the utility function over consumption of the single good in periods t and $t+1$

$$
u\left(c_{t}^{t}, c_{t+1}^{t}\right)=c_{t}^{t}+\log c_{t+1}^{t}
$$

and endowments $\left(w_{t}^{t}, w_{t+1}^{t}\right)=\left(w_{1}, w_{2}\right)$. (Notice that the utility function is not $\log c_{t}^{t}+\log c_{t+1}^{t}$.) Suppose that the representative consumer in the initial old generation has the utility function

$$
u^{0}\left(c_{1}^{0}\right)=\log c_{1}^{0}
$$

and endowment $w_{1}^{0}=w_{2}$ of the good in period 1 and endowment m of fiat money.
(a) Describe an Arrow-Debreu market structure for this economy, explaining when markets are open, who trades with whom, and so on. Define an Arrow-Debreu equilibrium for this economy.
(b) Describe a sequential market structures for this economy, explaining when markets are open, who trades with whom, and so on. Define a sequential markets equilibrium for this economy.
(c) Suppose that $m=0$. Calculate both the Arrow-Debreu equilibrium and the sequential markets equilibrium.
(d) Define a Pareto efficient allocation. Suppose that $w_{2}>1$. Is the equilibrium allocation in part c Pareto efficient? Explain carefully why or why not.
(e) Suppose now that there are two types of consumers of equal measure in each generation. The representative consumer of type 1 born in period $t, t=1,2, \ldots$, has the utility function over consumption of the single good in periods t and $t+1$

$$
u_{1}\left(c_{t}^{1 t}, c_{t+1}^{1 t}\right)=c_{t}^{1 t}+\log c_{t+1}^{1 t},
$$

while the representative consumer of type 2 has the utility function

$$
u_{2}\left(c_{t}^{2 t}, c_{t+1}^{2 t}\right)=\log c_{t}^{2 t}+c_{t+1}^{2 t} .
$$

The endowments of these consumers are $\left(w_{t}^{i t}, w_{t+1}^{i t}\right)=\left(w_{1}^{i}, w_{2}^{i}\right), i=1,2$. The representative consumers of type 1 and 2 who live only in period 1 have utility functions $\log c_{1}^{10}$ and c_{1}^{20}, endowments $w_{1}^{10}=w_{2}^{1}$ and $w_{1}^{20}=w_{2}^{2}$ of the good in period 1, and endowments m^{1} and m^{2} of fiat money. Define an Arrow-Debreu equilibrium for this economy.
3. Consider an overlapping generations economy in which the representative consumer in generation $t, t=1,2, \ldots$, has preferences over the consumption of the single good in each of the two periods of her life given by the utility function

$$
u\left(c_{t}^{t}, c_{t+1}^{t}\right)=\log c_{t}^{t}+\log c_{t+1}^{t} .
$$

This consumer is endowed with quantities of labor $\left(\ell_{t}^{t}, \ell_{t+1}^{t}\right)=\left(\bar{\ell}_{1}, \bar{\ell}_{2}\right)$. In addition, there is a generation 0 who representative consumer lives only in period 1 and has the utility function

$$
u^{0}\left(c_{1}^{0}\right)=\log c_{1}^{0},
$$

and the endowment of $\bar{\ell}_{2}$ units of labor and \bar{k}_{1}^{0} units of capital in period 1 . In addition, this consumer has an endowment of fiat money m, which can be positive, negative or zero.

The production function is

$$
f\left(k_{t}, \ell_{t}\right)=\theta k_{t}^{\alpha} \ell_{t}^{1-\alpha},
$$

where $\theta>1$ and $1>\alpha>0$. Capital depreciates at the rate δ per period, $0 \leq \delta \leq 1$.
(a) Define a sequential market equilibrium for this economy.
(b) Assume that consumers own capital and rent it to the firms. Define an Arrow-Debreu equilibrium for this economy. State and prove two theorems that establish the equivalence between a sequential market equilibrium and an Arrow-Debreu equilibrium.
(c) Suppose that the generation of consumers born in period $t, t=1,2, \ldots$, live for three periods and have the utility function

$$
u\left(c_{t}^{t}, c_{t+1}^{t}, c_{t+2}^{t}\right)=\log c_{t}^{t}+\log c_{t+1}^{t}+\log c_{t+2}^{t}
$$

and labor endowments $\left(\ell_{t}^{t}, \ell_{t+1}^{t}, \ell_{t+2}^{t}\right)=\left(\bar{\ell}_{1}, \bar{\ell}_{2}, \bar{\ell}_{3}\right)$. In addition there is an old generation, generation -1 , that lives only in period 0 and a middle aged generation, generation 0 , that lives in period 1 and 2. The consumers in these generations have utility functions

$$
\begin{gathered}
u\left(c_{1}^{-1}\right)=\log c_{1}^{-1} \\
u\left(c_{1}^{0}, c_{2}^{0}\right)=\log c_{1}^{0}+\log c_{2}^{0},
\end{gathered}
$$

endowments of labor $\ell_{1}^{-1}=\bar{\ell}_{3}$ and $\left(\ell_{1}^{0}, \ell_{2}^{0}\right)=\left(\bar{\ell}_{2}, \bar{\ell}_{3}\right)$, endowments of capital \bar{k}_{1}^{-1} and \bar{k}_{1}^{0}, and endowments of fiat money m^{-1} and m^{0}. Define a sequential market equilibrium for this economy.
(d) Assume that consumers own capital and rent it to the firms. Define an Arrow-Debreu equilibrium for the economy in part c.

