PROBLEM SET \#2

1. Consider an overlapping generations economy in which the representative consumer in generation $t, t=1,2, \ldots$, has preferences over the consumption of the single good in each of the two periods of her life given by the utility function

$$
u\left(c_{t}^{t}, c_{t+1}^{t}\right)=\log c_{t}^{t}+\log c_{t+1}^{t} .
$$

This consumer is endowed with quantities of labor $\left(\ell_{t}^{t}, \ell_{t+1}^{t}\right)=\left(\bar{\ell}_{1}, \bar{\ell}_{2}\right)$. In addition, there is a generation 0 who representative consumer lives only in period 1 and has the utility function

$$
u^{0}\left(c_{1}^{0}\right)=\log c_{1}^{0}
$$

and the endowment of $\bar{\ell}_{2}$ units of labor and \bar{k}_{1} units of capital in period 1. In addition, this consumer has an endowment of fiat money m, which can be positive, negative or zero.

The production function is

$$
f\left(k_{t}, \ell_{t}\right)=\theta k_{t}^{\alpha} \ell_{t}^{1-\alpha},
$$

and capital depreciates at the rate δ per period, $0 \leq \delta \leq 1$.
a) Define a sequential market equilibrium for this economy.
b) Define an Arrow-Debreu equilibrium for this economy. Assume that consumers own capital and rent it to the firms. State and prove two theorems that establish the equivalence between a sequential market equilibrium and an Arrow-Debreu equilibrium.
c) Reduce the equilibrium conditions to a second-order difference equation in k_{t}, that is, an equation in k_{t+1}, k_{t}, k_{t-1} that includes no other endogenous variables.
d) Suppose that $m=0$. Reduce the equilibrium conditions to a first-order difference equation in k_{t}. (Hint: in this case you know that the savings of generation t in period t in the sequential market equilibrium must equal k_{t+1}.)
2. Consider an economy with a representative, infinitely lived consumer who has the utility function

$$
\sum_{t=0}^{\infty} \beta^{t} \log c_{t}
$$

where $0<\beta<1$. The consumer owns one unit of labor in each period and \bar{k}_{0} units of capital in period 0 . The depreciation rate on capital is δ.
a) Suppose that the consumer borrows b_{t+1} bonds in period t to be paid off in period $t+1$. The consumer's initial endowment of bonds is $\bar{b}_{0}=0$, the wage rate in period t is w_{t}, the rental rate on capital is r_{t}^{k}, and the interest rate on bonds is r_{t}^{b}. Write down the consumer's utility maximization problem in a sequential markets economy. Explain why you need to include a constraint to rule out Ponzi schemes.
b) Write down the Euler conditions and the transversality conditions for this problem.

Suppose that feasible consumption/investment plans satisfy

$$
c_{t}+k_{t+1}-(1-\delta) k_{t} \leq F\left(k_{t}, \ell_{t}\right)
$$

where $F\left(k_{t}, \ell_{t}\right)=\theta k_{t}^{\alpha} \ell_{t}^{1-\alpha}$.
c) Define a sequential markets equilibrium with borrowing and lending for this economy. Prove that in equilibrium $r_{t}^{k}-\delta=r_{t}^{b}$ if $k_{t}>0$.
d) Suppose that the consumer sells his endowment of capital to the firm in period 0 . Thereafter, firms buy and sell capital from each other. Describe the production set for the Arrow-Debreu economy, the set of feasible $k_{0}, k_{1}, \ldots, \ell_{0}, \ell_{1}, \ldots, c_{0}, c_{1}, \ldots$.
e) Define the Arrow-Debreu equilibrium for this economy.
f) Suppose that the consumer can buy new capital in each period and rent capital services to the firm. Define the Arrow-Debreu equilibrium for this economy.
g) Carefully state theorems that relate the equilibrium allocations in parts c, e, and f . In particular, state two theorems that relate the equilibrium in part c to that in part f and two theorems that relate that in part e to that in part f .

