PROBLEM SET \#5

Consider a small open economy whose government borrows from international bankers. In every period, the value of output is

$$
y(z)=Z^{1-z} \bar{y}
$$

where $1>Z>0$ is a constant and $z=0$ if the government defaults in that period or has defaulted in the past and \bar{y} is a constant. The government's tax revenue is $\theta y(z)$ where the tax rate $1>\theta>0$ is constant. The consumers in the economy consume $c=(1-\theta) y(z)$. The government is benevolent and makes choices to maximize the expected discounted value of

$$
u(c, g)=\log c+\gamma \log g
$$

where $\gamma>0$ and $1>\beta>0$ is the discount factor. At the beginning of every period, the state of the economy is $s=\left(B, z_{-1}, \zeta\right)$ where B is the level of government debt; $z_{-1}=0$ if the government has defaulted in the past, and $z_{-1}=1$ if not, and $\zeta \sim U[0,1]$ is the realization of a sunspot variable. The government first offers B^{\prime} to international bankers. The intentional bankers have the same discount factor β as the government. They are also risk neutral and have deep pockets. These international bankers buy the bonds at a competitive auction that determines a price for $B^{\prime}, q\left(B^{\prime}, s\right)$. The government finally chooses to default or not, which determines private consumption c. Government spending g is determined by the government's budget constraint

$$
g+z B=\theta y(z)+q\left(B^{\prime}, s\right) B^{\prime} .
$$

If the government defaults, setting $z=0$, then assume that $Z_{-1}=0$ implies $z=0$ thereafter; that is, the economy suffers from the default penalty $1-Z$ forever. Furthermore, $z_{-1}=0$ implies $q\left(B^{\prime}, s\right)=0$; that is, the government is permanently excluded form credit markets.
a) Define a recursive equilibrium.
b) Assume that the bankers expect the government to default if $\zeta>1-\pi$ and if such an expectation would be self-fulfilling, where $1>\pi \geq 0$ is an arbitrary constant. Find a level of debt \bar{b} such that, if $B \leq \bar{b}$, no default occurs in equilibrium, but that, if $B>\bar{b}$, default occurs in equilibrium.
c) Suppose that $B_{0}>\bar{b}$, and the government chooses to run down its debt to $B_{T} \leq \bar{b}$ in T periods. Prove that it cannot be optimal to set $B_{T}<\bar{b}$. Prove that it is optimal for the
government to set g_{t} constant as long as $B_{t}>\bar{b}$ and no crisis occurs. Find expressions for g_{t} and B_{t} that depend on B_{0} and T. Find an expression for the expected discounted value of the utility of running down the debt that starts at B_{0} to \bar{b} in T periods. Find the limit of these expressions when $T=\infty$.
d) Using the answers to part c , write down a formula that determines a value of debt $\bar{B}(\pi)$ such that the government would choose to default if $B>\bar{B}(\pi)$ even if international bankers do not expect a default.
e) Using the answers to parts a-d, construct a recursive equilibrium.
f) Use this model to interpret events of the Mexican financial crisis of December 1994 through January 1995.
g) Assume that $Z=0.9, \bar{y}=100, \theta=0.4, \gamma=0.5, \beta=0.95$, and $\pi=0.05$. Calculate \bar{b}. Calculate the expected discounted value of the utility of running down the debt that starts at B_{0} to \bar{b} in T periods for $T=1,2,3,4,5,6,7$. Calculate $\bar{B}(0.05)$. Graph a policy function for government debt $B^{\prime}(B)$. Graph a policy function for government spending $g(B)$.

