Suppose that $B_{0}>\bar{b}$ and the government decides to reduce B to \bar{b} in T periods, $T=1,2, \ldots, \infty$. The first order conditions for the government's problem imply that

$$
g_{t}=g^{T}\left(B_{0}\right)
$$

The government's budget constraints are

$$
\begin{gathered}
g^{T}\left(B_{0}\right)+B_{0}=\theta \bar{y}+\beta(1-\pi) B_{1} \\
g^{T}\left(B_{0}\right)+B_{1}=\theta \bar{y}+\beta(1-\pi) B_{2} \\
\vdots \\
g^{T}\left(B_{0}\right)+B_{T-2}=\theta \bar{y}+\beta(1-\pi) B_{T-1} \\
g^{T}\left(B_{0}\right)+B_{T-1}=\theta \bar{y}+\beta \bar{b} .
\end{gathered}
$$

Notice that in period $T-1$ the government is able to sell its new debt, \bar{b}, at the price β, rather than at the price $\beta(1-\pi)$, because there is no risk that it will default on \bar{b}. Multiplying each equation by $(\beta(1-\pi))^{t}$ and adding, we obtain

$$
\begin{gathered}
\sum_{t=0}^{T-1}(\beta(1-\pi))^{t} g^{T}\left(B_{0}\right)+B_{0}=\sum_{t=0}^{T-1}(\beta(1-\pi))^{t} \theta \bar{y}+(\beta(1-\pi))^{T-1} \beta \bar{b} \\
\frac{1-(\beta(1-\pi))^{T}}{1-\beta(1-\pi)} g^{T}\left(B_{0}\right)+B_{0}=\frac{1-(\beta(1-\pi))^{T}}{1-\beta(1-\pi)} \theta \bar{y}+(\beta(1-\pi))^{T-1} \beta \bar{b} \\
g^{T}\left(B_{0}\right)=\theta \bar{y}-\frac{1-\beta(1-\pi)}{1-(\beta(1-\pi))^{T}}\left(B_{0}-(\beta(1-\pi))^{T-1} \beta \bar{b}\right) .
\end{gathered}
$$

Notice that

$$
g^{\infty}\left(B_{0}\right)=\lim _{T \rightarrow \infty} g^{T}\left(B_{0}\right)=\theta \bar{y}-(1-\beta(1-\pi)) B_{0} .
$$

