MEASURING THE INCENTIVE TO COLLUDE
The Vitamin Cartels, 1990–1999

Mitsuru Igami (Yale Department of Economics)
Takuo Sugaya (Stanford Graduate School of Business)
Measuring the Incentive to Collude

- **Collusion** *(cooperation with competitors)*
 - Core issue in **IO**
 - Main application of **repeated games**

- **Measuring the incentives of colluding firms**
 - Key step for economic analysis & antitrust policy

- **Mission impossible…**
 - Theory says anything can be equilibrium *(Folk Theorem)*.
 - Need to know firms’ payoffs, strategies, and beliefs.
 - But data don’t exist because:
 - Explicit collusion *(= cartel)* is *per se* illegal.
 - Tacit collusion is… tacit.

⇒ **End of the theorist-empiricist cooperation?**
The Vitamin Cartels, 1990–1999
One of the biggest Antitrust cases ever

<table>
<thead>
<tr>
<th>Rank</th>
<th>Product</th>
<th>Firm</th>
<th>Year</th>
<th>Country</th>
<th>Geographic scope</th>
<th>Fine ($ million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vitamins</td>
<td>Roche</td>
<td>1999</td>
<td>Switzerland</td>
<td>International</td>
<td>500</td>
</tr>
<tr>
<td>2</td>
<td>LCD panels</td>
<td>AU Optronics</td>
<td>2012</td>
<td>Taiwan</td>
<td>International</td>
<td>500</td>
</tr>
<tr>
<td>3</td>
<td>Car parts</td>
<td>Yazaki</td>
<td>2012</td>
<td>Japan</td>
<td>International</td>
<td>470</td>
</tr>
<tr>
<td>4</td>
<td>Car parts</td>
<td>Bridgestone</td>
<td>2014</td>
<td>Japan</td>
<td>International</td>
<td>425</td>
</tr>
<tr>
<td>5</td>
<td>LCD panels</td>
<td>LG Display</td>
<td>2009</td>
<td>Korea</td>
<td>International</td>
<td>400</td>
</tr>
<tr>
<td>6</td>
<td>Air transport</td>
<td>Air France & KLM</td>
<td>2008</td>
<td>France & Netherlands</td>
<td>International</td>
<td>350</td>
</tr>
<tr>
<td>7</td>
<td>Air transport</td>
<td>Korean Air</td>
<td>2007</td>
<td>Korea</td>
<td>International</td>
<td>300</td>
</tr>
<tr>
<td>7</td>
<td>Air transport</td>
<td>British Airways</td>
<td>2007</td>
<td>UK</td>
<td>International</td>
<td>300</td>
</tr>
<tr>
<td>7</td>
<td>DRAM</td>
<td>Samsung</td>
<td>2006</td>
<td>Korea</td>
<td>International</td>
<td>300</td>
</tr>
<tr>
<td>10</td>
<td>Vitamins</td>
<td>BASF</td>
<td>1999</td>
<td>Germany</td>
<td>International</td>
<td>225</td>
</tr>
</tbody>
</table>

Source: U.S. Department of Justice, Antitrust Division. Ranking as of September 12, 2016.
The Vitamin Cartels, 1990–1999

Global Market Shares (%)

<table>
<thead>
<tr>
<th>Firm</th>
<th>Market</th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>B5</th>
<th>B6</th>
<th>B9</th>
<th>B12</th>
<th>C</th>
<th>D3</th>
<th>E</th>
<th>H</th>
<th>Carotinoids</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roche</td>
<td></td>
<td>48</td>
<td>44</td>
<td>54</td>
<td>36</td>
<td>49</td>
<td>39</td>
<td>–</td>
<td>46</td>
<td>43</td>
<td>46</td>
<td>45</td>
<td>83</td>
<td>46</td>
</tr>
<tr>
<td>BASF</td>
<td></td>
<td>30</td>
<td>2</td>
<td>30</td>
<td>21</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>7</td>
<td>13</td>
<td>28</td>
<td>–</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>RP</td>
<td></td>
<td>21</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>62</td>
<td>–</td>
<td>–</td>
<td>13</td>
<td>–</td>
<td>–</td>
<td>8</td>
</tr>
<tr>
<td>Takeda</td>
<td></td>
<td>–</td>
<td>31</td>
<td>3</td>
<td>–</td>
<td>12</td>
<td>23</td>
<td>–</td>
<td>26</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>7</td>
</tr>
<tr>
<td>Eisai</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>12</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Daiichi</td>
<td></td>
<td>–</td>
<td>–</td>
<td>29</td>
<td>12</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E. Merck</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>10</td>
<td>–</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hoechst</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>7</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>35</td>
<td>–</td>
<td>44</td>
<td>42</td>
<td>–</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cartel total</td>
<td></td>
<td>90</td>
<td>77</td>
<td>87</td>
<td>86</td>
<td>81</td>
<td>97</td>
<td>69</td>
<td>89</td>
<td>100</td>
<td>99</td>
<td>97</td>
<td>100</td>
<td>93</td>
</tr>
<tr>
<td>Non-cartel</td>
<td></td>
<td>1</td>
<td>23</td>
<td>13</td>
<td>14</td>
<td>19</td>
<td>3</td>
<td>31</td>
<td>11</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>7</td>
</tr>
</tbody>
</table>

The Vitamin Cartels, 1990–1999

- Primary evidence
 - FBI investigation & DOJ prosecution in 1999, plus:
 - Litigation in America (Bernheim 2002)
 - EC enforcement in 2001 (EC 2003)
 - UK Competition Commission’s merger report (UKCC 2001)
 - BASF acquired Takeda’s vitamin business after the cartel

- Secondary evidence (books):
 - Connor, Global Price Fixing (2007)

⇒ Road map
 - Bernheim data → stage-game payoffs
 - EC & UK evidence → strategies & beliefs
 - Repeated-game model → incentives to collude
 - Counterfactuals → demand, fringe, & merger
QUESTIONS

- Why did some cartels survive for a decade while others collapsed after only a few years?

- How do mergers affect the incentive to collude?
Road Map

1. Data & Industry

2. Theory & Empirics

3. Findings
 (A) Who killed the vitamin C cartel?
 (B) Would BASF-Takeda merger have helped?
 (C) What kind of merger helps collusion?
FINDING THE BERNHEIM REPORT (2002)

Background

- Dr. B. Douglas Bernheim, expert witness and Stanford economist
- Report written in 2002 for the plaintiffs (= 4,000+ buyers of bulk vitamins)
- Multi-district class-action litigations, consolidated at the U.S. District Court for the District of Columbia
- Included in jury trials in 2003, which made it publicly available

U.S. District Court for the District of Columbia

(November 3, 2016)

Boxes full of documents

I was about to give up
VITAMIN C: PRICE & COST

Vitamin C: Production by Firm

Output (1,000 kg)

PRODUCT CHARACTERISTICS

- Each vitamin constitutes a separate market.
 - Demand side: Unique metabolic functions
 - Supply side: Unique manufacturing processes

- Homogeneous within each vitamin
 - Price is king in wholesale bulk chemicals.
 - No differentiation across producers
 - Widely viewed as commodities

- Geographically global market
 - Value >>> transport cost & import tariffs
 - Cross-border arbitrage by independent traders

DEMAND

Why we need vitamins
- Avoidance of deficiency symptoms
- Broader “health benefits” for humans
 - 92% of vitamin C and β-carotene is for human use.
- Animal nutrition
 - 87% of vitamin A, and 73% of vitamin E, are for animals.

Steady growth
- Population of humans and animals; GDP per capita
- “Perceived benefits” and “educational marketing”
- Sophistication of animal husbandry

Many small buyers
- 4,000+ class plaintiffs; 9,000+ purchasers
- Manufacturers of feeds, foods/beverages, and drugs
- Farmers, cooperatives, and premix blenders
 - Even Coca-Cola is only 2.14% of the vitamin C market.

DIFFERENT STROKES FOR DIFFERENT FOLKS

Figure 6-2: Premix composition by value

Source: Roche and BASF transaction data and premix formulations

Source: Bernheim (2002), p. 60.
SUPPLY

- All major suppliers in the cartels
 - About four cartel members in each vitamin
- European “Big Three”
 - Roche (Hoffmann-La Roche): a pioneering Swiss drug company
 - BASF (Badische Anilin und Soda Fabrik): a German chemical giant
 - RP (Rhône-Poulenc): a French chemical maker
- Japanese drug makers
 - Takeda, the largest in Japan, followed by Eisai, Daiichi
 - American companies had exited by the 1980s
 - E.g., Pfizer, Merck, American Home Products
- Mature technologies, stable market structure
 - No major innovations in production processes since 1980
 - No major entry or exit, except for the Chinese fringe

Source: Bernheim (2002); Conner (2007), Global Price Fixing, second edition.
THE CARTELS (I): BEGINNING

“We need to talk”
- June 7, 1989, Basel: Roche × BASF (vitamin heads)
 - Met to discuss cooperation in vitamins A & E
- August 1989, Zurich: RP (head of Animal Nutrition division)

Design
- Freeze market shares in 1988 for “foreseeable future”
- Split predicted 1990 sales proportionally to the quotas
- Quarterly meetings

“Let’s invite other people”
- 1990: Hoechst & Eisai
 - Vitamin B12, beta carotene, canthaxanthin, premixes
- 1991: Daiichi, E. Merck, Takeda + {Sumitomo, Tanabe, Kongo}
 - Vitamins B1, B2, B5, B6, B9, C, H

THE CARTELS (II): OPERATIONS

“Perfect” monitoring (with time lag)
- Self-reported sales data
- Verified with government trade statistics
 - Published with lag

Punishment
- Threats of:
 - Reversion to competitive pricing
 - Indefinite breakdown of cartel
 - EC (2003) reports that “the three European producers presented Takeda with an ultimatum: unless it agreed to cut back its vitamin C sales, they would withdraw from the agreement” (p. 44)

- No indication of:
 - “Multi-market contact” style threats
 - “Carrot-and-stick” or other complicated punishment strategies
 - Nothing like “Price wars as part of equilibrium”

The Cartels (III): End

- Six “natural deaths” in 1994 or 1995
 - Unexpected fringe entry & expansion
 - Chinese state-owned enterprises (SOEs): B1, B6, B9, C
 - Il Sung of Korea: H
 - Archer Daniels Midland (ADM) & Coors Biotech: B2
 - August 24, 1995: Final meeting of vitamin C cartel

- Ten “forced terminations” in 1998 or 1999
 - January 1999: RP applied for Corporate Leniency Program
 - February 1999: RP managers tape-recorded the cartel meeting
 - Roche & BASF pled guilty and agreed to pay $725 million fines

- Mergers
 - RP’s merger with Hoechst to become Aventis
 - BASF’s acquisition of Takeda’s vitamin businesses in 2001

ROAD MAP

1. DATA & INDUSTRY

2. THEORY & EMPIRICS
 Step 1: Demand & Costs
 Step 2: Profits
 Step 3: Values

3. FINDINGS
 (A) Who killed the vitamin C cartel?
 (B) Would BASF-Takeda merger have helped?
 (C) What kind of merger helps collusion?
Step 1
Demand & Supply

- **Linear demand**

 \[Q_t^D = \alpha_0 + \alpha_1 P_t + \alpha_2 X_t + \epsilon_t. \]

- **Market clearing (demand = supply)**

 \[Q_t^D = Q_{car,t} + Q_{fri,t}. \]

- **Fringe supply**

 \[Q_{fri,t} = \kappa_t, \]
 \[Q_{fri,t} = \lambda_t P_t, \text{ and} \]
 \[Q_{fri,t} = \kappa + \lambda_t P_t. \]
Step 1

Demand & Supply (cont.)

- Cournot FOC (before/after the cartel)

\[
P_t + \frac{dP}{dQ_t} \times q_{i,t} = c_{roche,t}^{obs} + \gamma_i + \eta_{i,t} \quad \text{if } I_t = 0
\]

(8)

- GMM with 3 moment conditions

\[
\bar{m}_1 (\theta) = \sum_y \bar{\varepsilon}_y \cdot Z_y,
\]

\[
\bar{m}_2,i (\theta) = \sum_y \bar{\eta}_{i,y} \cdot W_{i,y},
\]

\[
\bar{m}_3 (\theta) = \sum_t \bar{\eta}_t \cdot X_t,
\]

\[
\hat{\theta}_{gmm} = \arg \min_{\theta} \bar{m} (\theta)' I \bar{m} (\theta),
\]
Step 1

Demand & Supply (cont.)

Table 2: GMM Estimates of Demand and Costs (Vitamin C)

<table>
<thead>
<tr>
<th>Model Specification of fringe</th>
<th>Time-varying intercept (Q_{frt} = \kappa_t) (Baseline)</th>
<th>Time-varying slope (Q_{frt} = \lambda_t P_t)</th>
<th>Time-invariant intercept and time-varying slope (Q_{frt} = Q_{frt,1990} + \lambda_t P_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_0)</td>
<td>-0.434 ((3.375))</td>
<td>0.066 ((2.313))</td>
<td>-0.068 ((2.330))</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>-0.330 ((0.002))</td>
<td>-0.248 ((0.002))</td>
<td>-0.312 ((0.005))</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>0.391 ((0.011))</td>
<td>0.323 ((0.007))</td>
<td>0.364 ((0.009))</td>
</tr>
<tr>
<td>(\gamma_{roche})</td>
<td>0.011 ((2.597))</td>
<td>-0.188 ((4.400))</td>
<td>0.107 ((11.813))</td>
</tr>
<tr>
<td>(\gamma_{takeda})</td>
<td>3.194 ((0.626))</td>
<td>3.136 ((0.925))</td>
<td>3.262 ((2.263))</td>
</tr>
<tr>
<td>(\gamma_{c.merck})</td>
<td>4.474 ((0.168))</td>
<td>4.426 ((0.234))</td>
<td>4.485 ((0.580))</td>
</tr>
<tr>
<td>(\gamma_{basf})</td>
<td>4.882 ((0.152))</td>
<td>4.880 ((0.157))</td>
<td>4.914 ((0.300))</td>
</tr>
<tr>
<td>Moment conditions (m_1, m_2, m_3)</td>
<td>(m_1, m_2)</td>
<td>(m_1, m_2)</td>
<td>(m_1, m_2)</td>
</tr>
<tr>
<td>Number of months</td>
<td>112</td>
<td>112</td>
<td>112</td>
</tr>
</tbody>
</table>

Note: Standard errors in parentheses are based on 1,000 block-bootstrap samples, where each block consists of 12 consecutive months of a calendar year. See Appendix C.3 for vitamins A and E, and beta carotene.
STEP 2
PROFITS UNDER CARTEL, DEVIATION, & COMPETITION

- Profits

\[\pi_{i, \tau | t} = (P_{i, \tau | t} - c_{i, t}) q_{i, \tau | t}, \]

(7)

- Three cases

 - \(\pi^C_{i, \tau | t} \): Cartel maximizes its joint profit via quotas
 - Its target price is “monopoly” price

 - \(\pi^D_{i, \tau | t} \): Deviation (non-compliance) for 3 periods
 - Lagged perfect monitoring

 - \(\pi^N_{i, \tau | t} \): Static Nash if someone has ever cheated
 - Punishment (trigger strategy)
STEP 2
Actual cartel price ≈ Monopoly price

Graph showing the comparison of actual cartel prices and monopoly prices from 1991 to 1998.
Step 3

Values & ICCs

- Payoff if comply with the cartel agreement
 \[V_{i,\tau|t}^{C} = \sum_{s \geq \tau} \beta^{s-\tau} \pi_{i,s|t}^{C}, \]
 \[(9) \]

- Payoff if not comply
 \[V_{i,\tau|t}^{D} = \sum_{s = \tau}^{\tau+2} \beta^{s-\tau} \pi_{i,s|t}^{D} + \sum_{s \geq \tau+3} \beta^{s-\tau} \pi_{i,s|t}^{N}, \]
 \[(10) \]

- Incentive compatibility constraint (ICC)
 - The trigger strategy is equilibrium iff
 \[\min_{i \in I, \tau \geq t} (V_{i,\tau|t}^{C} - V_{i,\tau|t}^{D}) \geq 0. \]
 \[(11) \]
Step 3

Values & ICCs (cont.)

![Graph showing Fringe Output over time with annotations](image)

Note: The explosion mark in 1992 represents the NATO bombing of vitamin C plants in Bosnia, which ignited the Chinese industrial policy. Source: EC (2003), Bernheim (2002).
A string of “shocks”:
(1) “Two-step fermentation” method invented
(2) The Bosnian war, ’92–’95
(3) Economic liberalization (Deng’s speech ‘92)

Note: The explosion mark in 1992 represents the NATO bombing of vitamin C plants in Bosnia, which ignited the Chinese industrial policy.
Source: EC (2003), Bernheim (2002).
Step 3
Values & ICCs (cont.)

A string of “shocks”:
1. “Two-step fermentation” method invented
2. The Bosnian war, ’92–’95
3. Economic liberalization (Deng’s speech ‘92)

Note: The explosion mark in 1992 represents the NATO bombing of vitamin C plants in Bosnia, which ignited the Chinese industrial policy.
Source: EC (2003), Bernheim (2002).
STEP 3
VALUES & ICCs: INDIVIDUAL INCENTIVES

Individual Firms' Incentives
(Point estimates at beta = 0.8)
Collective Incentive = Lower Envelope of Individual Incentives
(Point estimates and confidence intervals at beta = 0.8)
...Meanwhile in Other Vitamin Markets

Vitamin A

- Estimate (beta = 0.8)
- 95% confidence interval
- 99% confidence interval

Vitamin E

- Estimate (beta = 0.8)
- 95% confidence interval
- 99% confidence interval

Beta Carotene

- Estimate (beta = 0.8)
- 95% confidence interval
- 99% confidence interval
ROAD MAP

1. DATA & INDUSTRY

2. THEORY & EMPIRICS
 Step 1: Demand & Costs
 Step 2: Profits
 Step 3: Values

3. FINDINGS
 (A) Who killed the vitamin C cartel?
 (B) Would BASF-Takeda merger have helped?
 (C) What kind of merger helps collusion?
Let’s compare the following counterfactuals:

- The cartel’s “dream world” scenario, in which
 - Fringe supply had stopped growing after 1994; and
 - Demand growth had not slowed down after 1994.
 - Let’s call it Scenario #1

- But things happened:
 - Scenario #1 – “no China” dream = Scenario #2
 - Scenario #1 – “no slow-down” dream = Scenario #3

- And the reality:
 - Scenario #1 – ALL DREAMS = Actual
FINDING 1
WHO KILLED THE VITAMIN C CARTEL?

($ million)

- Actual Cartel Period
- Scenario 1 (Demand slowdown = NO; Fringe growth = NO)
- Scenario 2 (Demand slowdown = NO; Fringe growth = YES)
- Scenario 3 (Demand slowdown = YES; Fringe growth = NO)
- Actual (Demand slowdown = YES; Fringe growth = YES)
Could this merger have saved the vitamin C cartel?

Assumptions:
1. BASF-Takeda inherits Takeda’s marginal costs.

\[
C_{basf, \tau | t}^{post} = (1 - \sigma) \times \min \left\{ C_{takeda, \tau | t}^{pre}, C_{basf, \tau | t}^{pre} \right\} = (1 - \sigma) \times C_{takeda, \tau | t}^{pre}
\]

(18)

2. Physical capacities do not bind.

3. Cartel quotas are based on static-Nash shares in 1990.

Based on:
- The U.K. Competition Commission’s assessment (‘01)
- The EC judgment (‘03)
Finding 2

If BASF-Takeda Merger *before 1991*

Table 3: Cartel Stability under Hypothetical BASF-Takeda Merger in 1990

<table>
<thead>
<tr>
<th>Merger scenario</th>
<th>No merger</th>
<th>0</th>
<th>0.05</th>
<th>0.1</th>
<th>0.15</th>
<th>0.2</th>
<th>0.25</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synergy ((\sigma))</td>
<td></td>
</tr>
<tr>
<td>Collusive incentive</td>
<td>329</td>
<td>485</td>
<td>512</td>
<td>483</td>
<td>450</td>
<td>411</td>
<td>367</td>
<td>318</td>
<td>202</td>
<td>64</td>
</tr>
<tr>
<td>Coordinated effect</td>
<td>0</td>
<td>156</td>
<td>183</td>
<td>154</td>
<td>121</td>
<td>82</td>
<td>38</td>
<td>-12</td>
<td>-127</td>
<td>-264</td>
</tr>
<tr>
<td>(% change)</td>
<td>±0%</td>
<td>+47%</td>
<td>+55%</td>
<td>+47%</td>
<td>+37%</td>
<td>+25%</td>
<td>+11%</td>
<td>-4%</td>
<td>-31%</td>
<td>-80%</td>
</tr>
</tbody>
</table>

Note: The numbers (in thousand dollars) indicate the point estimates of the cartel’s collective incentive in equation (14) as of August 1995 under \(\beta = 0.8\). The first column shows our baseline estimates without merger. The other columns show results under the counterfactual BASF-Takeda merger in 1990 with specific levels of efficiency gain ("synergy"). See equation (22) for the definition of synergy, \(\sigma\).
Finding 3

Which Merger Helps Cartel Stability?

Table 4: Cartel Stability under Six Different Mergers

<table>
<thead>
<tr>
<th>Merger scenario</th>
<th>Marginal cost* ($/kg)</th>
<th>Num. of firms*</th>
<th>HHI* ($ thousand)</th>
<th>Collusive incentive** (%) change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Roche</td>
<td>Takeda</td>
<td>E. Merck</td>
<td>BASF</td>
</tr>
<tr>
<td>No merger</td>
<td>6.26</td>
<td>9.44</td>
<td>10.72</td>
<td>11.13</td>
</tr>
<tr>
<td>Merger 1</td>
<td>6.26</td>
<td>9.44</td>
<td>10.72</td>
<td>-</td>
</tr>
<tr>
<td>Merger 2</td>
<td>6.26</td>
<td>9.44</td>
<td>-</td>
<td>11.13</td>
</tr>
<tr>
<td>Merger 3</td>
<td>6.26</td>
<td>-</td>
<td>10.72</td>
<td>11.13</td>
</tr>
<tr>
<td>Merger 4</td>
<td>6.26</td>
<td>9.44</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Merger 5</td>
<td>6.26</td>
<td>-</td>
<td>10.72</td>
<td>-</td>
</tr>
<tr>
<td>Merger 6</td>
<td>6.26</td>
<td>-</td>
<td>-</td>
<td>11.13</td>
</tr>
</tbody>
</table>

*Note: We do not consider synergy in this subsection (i.e., $\sigma = 0$).

* As of December 1990 (i.e., immediately before the beginning of the vitamin C cartel).

** Collective incentive to collude as of August 1995 (i.e., its final month of operation on record) under $\beta = 0.8$.
CONCLUSION

- With “right” data & a repeated-game model, we can:
 1. Explain diverging fates of cartels
 2. Quantify the effects of demand & fringe
 3. Measure the “coordinated effects” of merger

- This research
 - “Perfect” monitoring (“Textbook” repeated-game model)
 - Quantity game (“Textbook” IO model)

- Future research
 - Private monitoring
 - Tacit collusion
 - Antitrust policy when cartels and mergers interact
 - Collusion & innovation