Mergers, Innovation, and Entry-Exit Dynamics

Mitsuru Igami Kosuke Uetake

Yale
May/June 2019

Mergers, Competition, \& Innovation

- How far should an industry (be allowed to) consolidate?
- Conventional analysis (e.g., Williamson '68, Werden \& Froeb '94, Nevo '00)
- Static tradeoff (market power vs. productivity)
- OK if mergers were exogenous
- OK if competition \& innovation were exogenous
- ...but they are not
- Demsetz ('73): Monopoly = winner of competition \& innovation
- Berry \& Pakes ('93): Merger-investment dynamics reverse static intuition
- Gilbert \& Greene ('15): FTC-DOJ always try to assess "impact on innovation"
- ...and welfare tradeoff becomes dynamic
- Tirole ('88) quoting Schumpeter ('42): "If one wants to induce firms to undertake R\&D, one must accept the creation of monopolies as a necessary evil"

Dynamic Welfare Tradeoff

- With endogenous mergers, innovation, \& entry-exit
- Static effect of allowing a merger
- Competition (-)
- Synergy (+)
- Ex-post effect of new market structure
- Mergers $(+) \Longrightarrow$ competition (-)
- Innovation (+/-/inv-U/plateau)
- Ex-ante effect of permissive merger policy
- Option value $(+) \Longrightarrow$ net entry $(+)$, R\&D (+) \Longrightarrow competition (+) \& innovation (+)
- Dynamic welfare tradeoff
- But how do we quantify all these?
- Challenge: Everything is endogenous, strategic, \& forward-looking
- This paper
- Empirical model of mergers, innovation, \& entry-exit dynamics
- Consolidation of the hard disk drive (HDD) industry
- Optimal merger policy under dynamic welfare tradeoff

Triple Trouble for Empirical Analysis

- Dynamics of mergers \& innovation

1. Rare events $=$ sparse data \Longrightarrow no experiment; need a model
2. Dynamic games $=$ multiple equilibria \Longrightarrow no "full-solution" estimation
3. Innovative industries $=$ global \& nonstationary \Longrightarrow no " 2 -step" estimation

- Our approach
- Tractable \& estimable model
- Extend Rust ('87) to random-mover dynamic game
- Context
- Single-agent dynamic discrete choice
- Pakes ('86), Rust ('87)
- Dynamic game (with stochastically alternating moves)
- Baron \& Ferejohn ('89), Okada ('96), Iskhakov, et al. ('14, '16)
- ...with endogenous mergers
- Gowrisankaran ('95, '99), Jeziorski ('14)
- ...\& endogenous innovation
- Mermelstein, Nocke, Satterthwaite, \& Whinston ('14), Marshall \& Parra ('15)

Model (1 of 2)

- Goals
- Endogenizing mergers, innovation, \& competition
- Tractable, estimable, \& useful for policy simulation
- Overview: Random-mover dynamic game

- Click for graphic illustration

Model (2 of 2)

- Timeline

1. Nature picks mover i with recognition prob $\rho_{i}\left(\omega_{t}\right)=1 / n_{\max }$
2. Firm i makes discrete choice $a_{i t}$

- Take-it-or-leave-it (TIOLI) offer \Longrightarrow acquisition price $p_{i j}\left(\omega_{t}\right)$
- Sensitivity check: 50-50 Nash Bargaining (NB)

3. All active firms earn period profits $\pi_{i t}\left(\omega_{t}\right)$
4. State transits from ω_{t} to ω_{t+1}

- Stochastic synergy realizes: $\Delta_{i j t} \sim$ i.i.d. Poisson (λ)
- "Hard to know where skeletons are from the outside. You have to dive into it and swim in the water" -Finis Conner (founder of Seagate \& Conner)
- From author's personal interview on April 20, 2015, in Corona del Mar, CA
- Unique sequential equilibrium
- Finite horizon + sequential move + discrete choice
- Effectively a single-agent problem, repeated T times
- Backward induction

Industry \& Data (1 of 2)

- Entry, shakeout, \& mergers

Industry \& Data (2 of 2)

- Mergers: Dominant mode of exit

New Entry

Exit and Merger

- HDD is not alone
- "Exits are dwarfed by mergers in the IT epoch" (Jovanovic \& Rousseau '08)
- "M\&As account for a large portion of firm turnover: between 1981 and 2010, approximately 4.5% of active public firms merged in a given year, while the exit rate due to poor performance was 3.7% " (Dimopoulos \& Sacchetto '14)

Empirical Analysis (Roadmap for Next 10 Slides)

- Pairing 3 data elements with 3 model elements

Table: Overview of Empirical Analysis

Step	Data	Model	Method
1. Demand	Panel A	Log-linear demand	IV regression
2. Variable cost	Panel B	Cournot competition	First-order condition
3. Sunk cost	Panel C	Dynamic discrete choice	Maximum likelihood

- Data (Source: TrendFocus 1996-2016)
A. Aggregate sales
B. Firm-level market shares
C. Mergers, innovation, \& entry-exit

Estimation Task 1: Demand (1 of 3)

- Product characteristics: High-tech but commodities

hard drive by
HITACHI
- Same capacity, same speed, similar reliability, \& no luck in branding
- "Completely undifferentiated product" —Peter Knight
- Former senior vice president at Conner Peripherals \& Seagate Technology
- Former president of Conner Technology
- From author's personal interview on June 30, 2015, in Cupertino, CA

Estimation Task 1: Demand (2 of 3)

- HDDs are physically durable, but...

- ...OS \& CPU (Wintel) drives the PC cycle, not HDDs

Estimation Task 1: Demand (3 of 3)

- Log-linear demand for data storage

$$
\log Q_{t}=\alpha_{0}+\alpha_{1} \log P_{t}+\alpha_{2} \log X_{t}+\varepsilon_{t}
$$

- Q_{t} : Total exabytes shipped (1EB $=1$ billion GB)
- P_{t} : Average HDD price per gigabytes (\$/GB)
- X_{t} : PC shipments (in millions) as demand-shifter
- $Z_{t}: \mathrm{IV}=$ Disk price (\$/GB)

Table: Demand Estimates

	(1)	(2)	(3)	(4)
	OLS	OLS	IV	IV
Log HDD price per GB $\left(\alpha_{1}\right)$	-1.112	-1.046	-1.054	-1.043
	(0.035)	(0.046)	(0.032)	(0.038)
Log PC shipment $\left(\alpha_{2}\right)$	-	0.271	-	0.276
	$(-)$	(0.095)	$(-)$	(0.086)
Number of observations	83	83	83	83
First-stage regression				
Log disk price per GB	-	-	0.813	0.567
	$(-)$	$(-)$	(0.026)	(0.032)
Thai flood dummy	-	-	0.263	0.548
	$(-)$	$(-)$	(0.079)	(0.070)

Estimation Task 2: Marginal Costs (1 of 3)

- Market share by firm (HHI: 806 ('85) $\rightarrow 2,459$ ('11) $\rightarrow 3,832$ ('13))

- "Most mergers were to kill competitors, because it's cheaper to buy them." —Reggie Murray (Ministor)
- "The industry has to pool people \& talents, for further break-through." -Currie Munce (HGST/IBM)

Estimation Task 2: Marginal Costs (2 of 3)

- Use Cournot FOC to recover marginal costs

$$
P_{t}+\frac{d P}{d Q} q_{i t}=m c_{i t}
$$

- $P_{t} \& q_{i t}$: observed
- $\frac{d P}{d Q}$: estimated
- Intuition

$$
q_{i t}>q_{j t} \Longleftrightarrow m c_{i t}<m c_{j t}
$$

- In equilibrium, more efficient firms produce more
- Larger firms have lower marginal costs
- Interpretation à la Kreps \& Scheinkman ('83)

0 . $\left\{m c_{i t}\right\}$ pre-determined (state of expertise)

1. $\left\{q_{i t}\right\}$ pre-commitment (re-tooling of obsolete equipment)
2. $\left\{p_{i t}\right\}$ set in fierce competition

Estimation Task 2: Marginal Costs (3 of 3)

- Assessment of fit
- Model: Variable economic profit (excluding any fixed or sunk costs)
- Data: Gross accounting profit (including some fixed \& sunk costs)

Figure: Profit Margins (\%)

- Correlation between model \& accounting data
- Western Digital: . 75
- Seagate Technology: . 51

Estimation Task 3: Sunk Costs (1 of 4)

Table: List of Parameters and Key Specifications

Parameter	Notation	Empirical approach
1. Static estimates		
Demand	$\alpha_{0}, \alpha_{1}, \alpha_{2}$	Already estimated (step 1)
Variable costs	$m c_{i t}$	Already estimated (step 2)
Period profits	$\pi_{i t}\left(\omega_{t}\right)$	Already estimated (step 2)
2. Dynamics (sunk costs)		
Innovation, mergers, and entry	$\kappa^{i}, \kappa^{m}, \kappa^{e}$	MLE
Logit scaling parameter	σ	MLE
Base fixed cost of operation	ϕ_{0}	MLE
Time-varying fixed cost of operation	$\phi_{t}\left(\omega_{i t}\right)$	Accounting data
Liquidation value	$\kappa^{x}=0$	Calibrated (industry background)
3. Dynamics (transitions)	$\beta=0.9$	Calibrated (literature's standard)
Annual discount factor	$\delta=0.04$	Implied by mcit
Prob. stochastic depreciation	$\delta=1$	Implied by mcit
Average synergy	$\lambda=D e c-2025$	Sensitivity analysis
4. Other key specifications	$T=D=1$	
Terminal period	TIOLI: $\zeta=1$	Sensitivity analysis
Bargaining power	$\rho=\frac{1}{n_{\max }=\frac{1}{14}}$	Sensitivity analysis
Recognition probability		

- Simple \& transparent: Parsimonious model, bite-sized identification

Estimation Task 3: Sunk Costs (2 of 4)

- Full-solution approach with nested fixed-point algorithm
- Outer loop: Maximum likelihood estimation
- Contribution (of firm i at time t)

$$
I_{i t}\left(a_{i t} \mid \omega_{t} ; \kappa\right)=\rho_{i}\left(\omega_{t}\right) \prod_{\text {action } \in A_{i t}\left(\omega_{t}\right)} \operatorname{Pr}\left(a_{i t}=\text { action }\right)^{1\left\{a_{i t}=\text { action }\right\}}
$$

- Recognition: $\hat{\rho}_{i}\left(\omega_{t}\right)=$

$$
\left\{\begin{array}{cl}
1 & \text { if some } a_{i t} \in\{\text { merge, innovate, enter, exit }\} \\
1 / n_{\max } \times \operatorname{Pr}\left(a_{i t}=\text { stay } / \text { out }\right) & \text { if all } a_{i t} \in\{\text { idle, out }\}
\end{array}\right.
$$

- Max likelihood: $\hat{\kappa}=\arg \max _{\kappa} \frac{1}{T} \frac{1}{1} \sum_{t} \sum_{i} \ln \left[l_{i t}\left(a_{i t} \mid \omega_{t} ; \kappa\right)\right]$
- Inner loop: Solving the game (given parameter values)
- Backward induction from T
- Compare choice prob.: predicted (\tilde{P}) vs. data (\bar{P})

$$
\begin{aligned}
\operatorname{Pr}\left(a_{i t}=\text { action }\right) & =\frac{\exp \left(\tilde{V}_{i t}^{a c t i o n}\right)}{\exp \left(\tilde{V}_{i t}^{x}\right)+\exp \left(\tilde{V}_{i t}^{c}\right)+\exp \left(\tilde{V}_{i t}^{i}\right)+\sum_{j \neq i} \exp \left(\tilde{V}_{i j t}^{m}\right)} \\
\operatorname{Pr}\left(a_{i t}^{0}=\text { action }\right) & =\frac{\exp \left(\tilde{V}_{i t}^{a c t i o n}\right)}{\exp \left(\tilde{V}_{i t}^{e}\right)+\exp \left(\tilde{V}_{i t}^{o}\right)}
\end{aligned}
$$

Estimation Task 3: Sunk Costs (3 of 4)

Table: MLE of Dynamic (Sunk Cost) Parameters

Specification	(1)	(2)	(3)	(4)
Bargaining $(\zeta):$	$1(\mathrm{TIOLI})$	$0.5(\mathrm{NB})$	1	1
Synergy $(\lambda):$	1	1	0	2
Terminal period $(T):$	2025	2025	2025	2025
Base fixed cost, ϕ_{0}	0.011	0.011	0.012	0.011
	$[0.001,0.020]$	$[0.000,0.021]$	$[0.001,0.022]$	$[0.001,0.019]$
Catch-up innovation, κ^{i}	0.48	0.51	0.52	0.47
	$[0.26,0.69]$	$[0.28,0.75]$	$[0.27,0.77]$	$[0.26,0.68]$
Frontier innovation, $\kappa^{i 4}$	0.85	0.91	0.97	0.84
	$[0.39,1.42]$	$[0.42,1.54]$	$[0.45,1.63]$	$[0.26,0.68]$
Merger/bargaining, κ^{m}	1.27	1.21	1.34	1.31
	$[0.81,1.86]$	$[0.72,1.84]$	$[0.81,2.00]$	$[0.86,1.88]$
Entry, κ^{e}	0.17	0.16	0.15	0.18
	$[-]$	$[-]$	$[-]$	$[-]$
Logit scaling, σ	0.55	0.60	0.63	0.54
	$[0.41,0.80]$	$[0.45,0.87]$	$[0.47,0.91]$	$[0.40,0.78]$

- Estimates (slightly) move, in the right directions.
- More sensitivity analysis (in paper): ζ, T, ρ

Estimation Task 3: Sunk Costs (4 of 4)

- Fit: \# of firms \& frontier technology

- Firm-value estimates match historical acquisition prices, too.

Result (1 of 2): Incentive to Innovate

- Structural competition-innovation curve: "Plateaux"

- Upward-sloping (\because replacement vs. preemption)
- Heterogeneous (\because continuation values creates dynamics)

Result (2 of 2): Incentive to Merge

- Who merges with whom, \& when?

- Mergers are strategic complements (Qiu \& Zhou '06).
- All pairings possible (as in data); non-monotonic due to:
- Acquisition price: Lower targets more affordable
- Rationalization: Higher targets more attractive
- Synergy: Common or heterogeneous (in paper)

Counterfactual: Optimal Merger Policy (1 of 4)

- How far should the industry (be allowed to) consolidate?
- Consider static ("commitment") policy with threshold \underline{N}
- Baseline $\underline{N}=3$: Block mergers if $n_{t} \leqslant 3$
- Counterfactuals: Block mergers if $n_{t} \leqslant\{1,2,4,5,6, \ldots\}$
- Is $\underline{N}=3$ in reality? Yes
- FTC ('13) reviewed all merger cases (1996-2011)
(i) Blocked 0% of 5 -to- 4 mergers in high-tech
(ii) Blocked 33% of 4 -to- 3 mergers in high-tech
(iii) Blocked 100% of 3 -to-2 \& 2-to-1 mergers in high-tech
- Belief shared by: former chief economists, consultants, \& HDD veterans

Counterfactual: Optimal Merger Policy (2 of 4)

- Welfare performance across different policy thresholds

- Stricter policies $(\underline{N}=4,5,6)$ slightly improve social welfare
- More permissive policies $(\underline{N}=1,2)$ significantly reduce social welfare

Counterfactual: Optimal Merger Policy (3 of 4)

Table: Competition and Innovation Outcomes of Counterfactual Policies

Policy regime (\underline{N})	1	2	3 (Baseline)	4	5	6
(A) Average \# of firms	5.80	6.12	6.24	6.32	6.39	6.46
(B) Average tech. frontier	13.62	13.71	13.73	13.74	13.74	13.75
(C) Total \# of mergers	6.08	4.87	4.15	3.60	3.12	2.66
(D) Total \# of innovations	45.45	47.84	48.79	49.41	49.94	50.48
(E) Total \# of entries	0.10	0.05	0.03	0.02	0.02	0.02
(F) Total \# of exits	6.22	7.06	7.65	8.14	8.60	9.03

- $\underline{N}=4,5,6$: slightly more competition, less mergers, more exits
- $\underline{N}=1,2$: less competition, more mergers, less exits
- Mergers to monopoly/duopoly do not help innovations, either.

Counterfactual: Optimal Merger Policy (4 of 4)

- More results (in paper)
- In fast-declining industries ($T=2016$ or 2020, instead of 2025)
- Optimal $\underline{N}=5$ (instead of $\underline{N} \geqslant 6$)
- Slightly more permissive
- Optimal ex-post ("surprise" or "bate-and-switch") policy
- Promise $\underline{N}=1$ but implement $\underline{N} \geqslant 3$
- But can "surprise" only once
- Price-based policy (e.g., Farrell \& Shapiro '90) coming soon
- Instead of threshold \underline{N}
- Block if prices increase by $1 \%, 5 \%, 10 \%$, etc.

Conclusion

- Findings

1. Exit by merger: Consolidation
2. Competition-innovation: Positive plateaux
3. Optimal policy: $\underline{N}=3,4,5,6, \ldots$ but never 1 or 2

- Dynamic welfare tradeoff (\because value-creation/destruction side effects)
- Approach
- Random-mover dynamic game
- Addressing high-tech merger trilemma:
- Sparse data
- Multiple equilibria
- Global \& nonstationary
- Applicable to other contexts (e.g., computers \& semiconductors), too

