Mergers, Innovation, and Entry-Exit Dynamics

Mitsuru Igami Kosuke Uetake

Yale

May/June 2019

Mergers, Competition, & Innovation

- How far should an industry (be allowed to) consolidate?
 - Conventional analysis (e.g., Williamson '68, Werden & Froeb '94, Nevo '00)
 - Static tradeoff (market power vs. productivity)
 - OK if mergers were exogenous
 - OK if competition & innovation were exogenous
 - ...but they are not
 - Demsetz ('73): Monopoly = winner of competition & innovation
 - Berry & Pakes ('93): Merger-investment dynamics reverse static intuition
 - Gilbert & Greene ('15): FTC-DOJ always try to assess "impact on innovation"
 - ...and welfare tradeoff becomes dynamic
 - Tirole ('88) quoting Schumpeter ('42): "If one wants to induce firms to undertake R&D, one must accept the creation of monopolies as a necessary evil"

Dynamic Welfare Tradeoff

- With endogenous mergers, innovation, & entry-exit
 - Static effect of allowing a merger
 - Competition (-)
 - Synergy (+)
 - Ex-post effect of new market structure
 - Mergers $(+) \Longrightarrow$ competition (-)
 - Innovation (+/-/inv-U/plateau)
 - Ex-ante effect of permissive merger policy
 - Option value (+) ⇒ net entry (+), R&D (+)
 ⇒ competition (+) & innovation (+)
- Dynamic welfare tradeoff
 - But how do we quantify all these?
 - Challenge: Everything is endogenous, strategic, & forward-looking
- This paper
 - Empirical model of mergers, innovation, & entry-exit dynamics
 - Consolidation of the hard disk drive (HDD) industry
 - Optimal merger policy under dynamic welfare tradeoff

Triple Trouble for Empirical Analysis

- Dynamics of mergers & innovation
 - 1. Rare events = sparse data \implies no experiment; need a model
 - 2. Dynamic games = multiple equilibria \implies no "full-solution" estimation
 - 3. Innovative industries = global & nonstationary \implies no "2-step" estimation
- Our approach
 - Tractable & estimable model
 - Extend Rust ('87) to random-mover dynamic game
- Context
 - Single-agent dynamic discrete choice
 - Pakes ('86), Rust ('87)
 - Dynamic game (with stochastically alternating moves)
 - Baron & Ferejohn ('89), Okada ('96), Iskhakov, et al. ('14, '16)
 - ...with endogenous mergers
 - Gowrisankaran ('95, '99), Jeziorski ('14)
 - ...& endogenous innovation
 - Mermelstein, Nocke, Satterthwaite, & Whinston ('14), Marshall & Parra ('15)

Model (1 of 2)

- Goals
 - Endogenizing mergers, innovation, & competition
 - Tractable, estimable, & useful for policy simulation
- Overview: Random-mover dynamic game

• Click for graphic illustration

Model (2 of 2)

- Timeline
 - 1. Nature picks mover *i* with recognition prob $\rho_i(\omega_t) = 1/n_{max}$
 - 2. Firm *i* makes discrete choice *a*_{it}
 - Take-it-or-leave-it (TIOLI) offer \implies acquisition price $p_{ii}(\omega_t)$
 - Sensitivity check: 50-50 Nash Bargaining (NB)
 - 3. All active firms earn period profits $\pi_{it}(\omega_t)$
 - 4. State transits from ω_t to ω_{t+1}
 - Stochastic synergy realizes: $\Delta_{ijt} \sim i.i.d.$ Poisson (λ)
- "Hard to know where skeletons are from the outside. You have to dive into it and swim in the water" —Finis Conner (founder of Seagate & Conner)
 - From author's personal interview on April 20, 2015, in Corona del Mar, CA
- Unique sequential equilibrium
 - Finite horizon + sequential move + discrete choice
 - Effectively a single-agent problem, repeated T times
 - Backward induction

Industry & Data (1 of 2)

• Entry, shakeout, & mergers

Figure: Number of HDD Manufacturers

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (や 7/26

Industry & Data (2 of 2)

• Mergers: Dominant mode of exit

• HDD is not alone

- "Exits are dwarfed by mergers in the IT epoch" (Jovanovic & Rousseau '08)
- "M&As account for a large portion of firm turnover: between 1981 and 2010, approximately 4.5% of active public firms merged in a given year, while the exit rate due to poor performance was 3.7%" (Dimopoulos & Sacchetto '14)

Empirical Analysis (Roadmap for Next 10 Slides)

• Pairing 3 data elements with 3 model elements

Table: Overview of Empirical Analysis

Step	Data	Model	Method
1. Demand	Panel A	Log-linear demand	IV regression
Variable cost	Panel B	Cournot competition	First-order condition
3. Sunk cost	Panel C	Dynamic discrete choice	Maximum likelihood

9/26

- Data (Source: TrendFocus 1996-2016)
 - A. Aggregate sales
 - B. Firm-level market shares
 - C. Mergers, innovation, & entry-exit

Estimation Task 1: Demand (1 of 3)

• Product characteristics: High-tech but commodities

- Same capacity, same speed, similar reliability, & no luck in branding
- "Completely undifferentiated product" —Peter Knight
 - Former senior vice president at Conner Peripherals & Seagate Technology
 - Former president of Conner Technology
 - From author's personal interview on June 30, 2015, in Cupertino, CA

Estimation Task 1: Demand (2 of 3)

• HDDs are physically durable, but...

• ...OS & CPU (Wintel) drives the PC cycle, not HDDs

Estimation Task 1: Demand (3 of 3)

• Log-linear demand for data storage

$$\log Q_t = \alpha_0 + \alpha_1 \log P_t + \alpha_2 \log X_t + \varepsilon_t$$

- Q_t : Total exabytes shipped (1EB = 1 billion GB)
- P_t : Average HDD price per gigabytes (GB)
- X_t : PC shipments (in millions) as demand-shifter
- Z_t : IV = Disk price (\$/GB)

	6.15	(-)	(-)	4.5
	(1)	(2)	(3)	(4)
	OLS	OLS	iv	iv
Log HDD price per GB (α_1)	-1.112	-1.046	-1.054	-1.043
	(0.035)	(0.046)	(0.032)	(0.038)
Log PC shipment (α_2)	-	0.271	_	0.276
	(-)	(0.095)	(-)	(0.086)
Number of observations	83	83	83	83
First-stage regression				
Log disk price per GB	_	_	0.813	0.567
	(-)	(-)	(0.026)	(0.032)
Thai flood dummy	_	_	0.263	0.548
	(-)	(-)	(0.079)	(0.070)

Table: Demand Estimates

12 / 26

Estimation Task 2: Marginal Costs (1 of 3)

Market share by firm (HHI: 806 ('85) → 2,459 ('11) → 3,832 ('13))

- "Most mergers were to kill competitors, because it's cheaper to buy them."
 —Reggie Murray (Ministor)
- "The industry has to pool people & talents, for further break-through."—Currie Munce (HGST/IBM) <□><

13 / 26

Estimation Task 2: Marginal Costs (2 of 3)

Use Cournot FOC to recover marginal costs

$$P_t + \frac{dP}{dQ}q_{it} = mc_{it}$$

- $P_t \& q_{it}$: observed • $\frac{dP}{d\Omega}$: estimated
- Intuition

$$q_{it} > q_{jt} \Longleftrightarrow mc_{it} < mc_{jt}$$

- In equilibrium, more efficient firms produce more
- Larger firms have lower marginal costs
- Interpretation à la Kreps & Scheinkman ('83)
 - 0. {*mc*_{*it*}} pre-determined (state of expertise)
 - 1. $\{q_{it}\}$ pre-commitment (re-tooling of obsolete equipment)
 - 2. $\{p_{it}\}$ set in fierce competition

・ロン ・四 と ・ 日 と ・ 日 ・

Estimation Task 2: Marginal Costs (3 of 3)

• Assessment of fit

- Model: Variable economic profit (excluding any fixed or sunk costs)
- Data: Gross accounting profit (including some fixed & sunk costs)

Figure: Profit Margins (%)

- Correlation between model & accounting data
 - Western Digital: .75
 - Seagate Technology: .51

・ロン ・回 と ・ ヨ と ・ ヨ と …

Estimation Task 3: Sunk Costs (1 of 4)

Parameter	Notation	Empirical approach
1. Static estimates		
Demand	$\alpha_0, \alpha_1, \alpha_2$	Already estimated (step 1)
Variable costs	mc _{it}	Already estimated (step 2)
Period profits	$\pi_{it}(\omega_t)$	Already estimated (step 2)
2. Dynamics (sunk costs)		· · · ·
Innovation, mergers, and entry	$\kappa^{i}, \kappa^{m}, \kappa^{e}$	MLE
Logit scaling parameter	σ	MLE
Base fixed cost of operation	ϕ_0	MLE
Time-varying fixed cost of operation	$\phi_t(\omega_{it})$	Accounting data
Liquidation value	$\kappa^{x} = 0$	Calibrated (industry background)
3. Dynamics (transitions)		· · · · · ·
Annual discount factor	$\beta = 0.9$	Calibrated (literature's standard)
Prob. stochastic depreciation	$\delta = 0.04$	Implied by mcit
Average synergy	$\lambda = 1$	Implied by mc _{it}
4. Other key specifications		
Terminal period	T = Dec-2025	Sensitivity analysis
Bargaining power	TIOLI: $\zeta = 1$	Sensitivity analysis
Recognition probability	$\rho = \frac{1}{n_{\max}} = \frac{1}{14}$	Sensitivity analysis

Table: List of Parameters and Key Specifications

• Simple & transparent: Parsimonious model, bite-sized identification

Estimation Task 3: Sunk Costs (2 of 4)

- Full-solution approach with nested fixed-point algorithm
 - Outer loop: Maximum likelihood estimation
 - Contribution (of firm *i* at time *t*)

$$I_{it}(a_{it}|\omega_t;\kappa) = \rho_i(\omega_t) \prod_{action \in A_{it}(\omega_t)} \Pr(a_{it} = action)^{1\{a_{it} = action\}}$$

- Recognition: $\hat{\rho}_i(\omega_t) = \begin{cases} 1 & \text{if some } a_{it} \in \{\text{merge, innovate, enter, exit}\} \\ 1/n_{\max} \times \Pr(a_{it} = stay/out) & \text{if all } a_{it} \in \{idle, out\}. \end{cases}$ • Max likelihood: $\hat{\kappa} = \arg \max_{\kappa} \frac{1}{T} \frac{1}{T} \sum_t \sum_i \ln[J_{it}(a_{it}|\omega_t;\kappa)]$
- Inner loop: Solving the game (given parameter values)
 - Backward induction from T
 - Compare choice prob.: predicted (\tilde{P}) vs. data (\bar{P})

$$\Pr(a_{it} = action) = \frac{\exp\left(\tilde{V}_{it}^{action}\right)}{\exp\left(\tilde{V}_{it}^{x}\right) + \exp\left(\tilde{V}_{it}^{c}\right) + \exp\left(\tilde{V}_{it}^{i}\right) + \sum_{j \neq i} \exp\left(\tilde{V}_{ijt}^{m}\right)}$$
$$\Pr(a_{it}^{0} = action) = \frac{\exp\left(\tilde{V}_{it}^{action}\right)}{\exp\left(\tilde{V}_{it}^{e}\right) + \exp\left(\tilde{V}_{it}^{o}\right)}$$

Specification	(1)	(2)	(3)	(4)
Bargaining (ζ) :	1 (TIOLI)	0.5 (NB)	1	1
Synergy (λ) :	1	1	0	2
Terminal period (T) :	2025	2025	2025	2025
Base fixed cost, ϕ_0	0.011	0.011	0.012	0.011
	[0.001, 0.020]	[0.000, 0.021]	[0.001, 0.022]	[0.001, 0.019]
Catch-up innovation, κ^i	0.48	0.51	0.52	0.47
	[0.26, 0.69]	[0.28, 0.75]	[0.27, 0.77]	[0.26, 0.68]
Frontier innovation, κ^{i4}	0.85	0.91	0.97	0.84
	[0.39, 1.42]	[0.42, 1.54]	[0.45, 1.63]	[0.26, 0.68]
Merger/bargaining, κ^m	1.27	1.21	1.34	1.31
	[0.81, 1.86]	[0.72, 1.84]	[0.81, 2.00]	[0.86, 1.88]
Entry, κ^{e}	0.17	0.16	0.15	0.18
	[-]	[-]	[-]	[-]
Logit scaling, σ	0.55	0.60	0.63	0.54
	[0.41, 0.80]	[0.45, 0.87]	[0.47, 0.91]	[0.40, 0.78]

Table: MLE of Dynamic (Sunk Cost) Parameters

- Estimates (slightly) move, in the right directions.
- More sensitivity analysis (in paper): ζ , T, ρ

Estimation Task 3: Sunk Costs (4 of 4)

• Fit: # of firms & frontier technology

• Firm-value estimates match historical acquisition prices, too. $\langle \Box \rangle < \Box \rangle < \Box \rangle < 0$

≁) Q (≯ 19 / 26

Result (1 of 2): Incentive to Innovate

• Structural competition-innovation curve: "Plateaux"

- Upward-sloping (: replacement vs. preemption)
- Heterogeneous (:: continuation values creates dynamics)

Result (2 of 2): Incentive to Merge

• Who merges with whom, & when?

- Mergers are strategic complements (Qiu & Zhou '06).
- All pairings possible (as in data); non-monotonic due to:
 - Acquisition price: Lower targets more affordable
 - Rationalization: Higher targets more attractive
 - Synergy: Common or heterogeneous (in paper)

Counterfactual: Optimal Merger Policy (1 of 4)

- How far should the industry (be allowed to) consolidate?
 - Consider static ("commitment") policy with threshold \underline{N}
 - Baseline $\underline{N} = 3$: Block mergers if $n_t \leq 3$
 - Counterfactuals: Block mergers if $n_t \leq \{1, 2, 4, 5, 6, ...\}$
 - Is <u>N</u> = 3 in reality? Yes
 - FTC ('13) reviewed all merger cases (1996–2011)
 - (i) Blocked 0% of 5-to-4 mergers in high-tech
 - (ii) Blocked 33% of 4-to-3 mergers in high-tech
 - (iii) Blocked 100% of 3-to-2 & 2-to-1 mergers in high-tech
 - Belief shared by: former chief economists, consultants, & HDD veterans

Counterfactual: Optimal Merger Policy (2 of 4)

• Welfare performance across different policy thresholds

• Stricter policies ($\underline{N} = 4, 5, 6$) slightly improve social welfare

• More permissive policies $(\underline{N} = 1, 2)$ significantly reduce social welfare

Table: Competition and Innovation Outcomes of Counterfactual Policies

Policy regime (<u>N</u>)	1	2	3	4	5	6
			(Baseline)			
(A) Average # of firms	5.80	6.12	6.24	6.32	6.39	6.46
(B) Average tech. frontier	13.62	13.71	13.73	13.74	13.74	13.75
(C) Total # of mergers	6.08	4.87	4.15	3.60	3.12	2.66
(D) Total # of innovations	45.45	47.84	48.79	49.41	49.94	50.48
(E) Total # of entries	0.10	0.05	0.03	0.02	0.02	0.02
(F) Total # of exits	6.22	7.06	7.65	8.14	8.60	9.03

- $\underline{N} = 4, 5, 6$: slightly more competition, less mergers, more exits
- $\underline{N} = 1, 2$: less competition, more mergers, less exits
- Mergers to monopoly/duopoly do not help innovations, either.

Counterfactual: Optimal Merger Policy (4 of 4)

More results (in paper)

- In fast-declining industries (T = 2016 or 2020, instead of 2025)
 - Optimal $\underline{N} = 5$ (instead of $\underline{N} \ge 6$)
 - Slightly more permissive
- Optimal ex-post ("surprise" or "bate-and-switch") policy
 - Promise $\underline{N} = 1$ but implement $\underline{N} \ge 3$
 - But can "surprise" only once
- Price-based policy (e.g., Farrell & Shapiro '90) coming soon

- Instead of threshold <u>N</u>
- Block if prices increase by 1%, 5%, 10%, etc.

• Findings

- 1. Exit by merger: Consolidation
- 2. Competition-innovation: Positive plateaux
- 3. Optimal policy: $\underline{N} = 3, 4, 5, 6, \dots$ but never 1 or 2
- Dynamic welfare tradeoff (:: value-creation/destruction side effects)

Approach

- Random-mover dynamic game
- Addressing high-tech merger trilemma:
 - Sparse data
 - Multiple equilibria
 - Global & nonstationary
- Applicable to other contexts (e.g., computers & semiconductors), too

26 / 26