
Go from Single Agent Problem to Entry Game

• Like before: time  = 1 2 

• Two kinds of agents: Incumbents in industry already. Num-

bered  = 1 to , where   ̄, maximum number of

agents.

—  = 1 stay in

—  = 0, exit.

• Suppose one potential entrant each period. Entry feasible

only if   ̄ (simplifies the state space)



—  = 1, enter

—  = 0, not enter.

• State variables at time 

— State  =number of firms in industry at beginning of

period.(since symmetric, can keep track just number of

firms).

— A utility shock to each choice of incuments  = 1  and
potential entrant

∗ 0 utility shock to 

 = 0

∗ 1 utility shock to 

 = 1

∗ analogous shocks for potential entrant



• Play of game.

— Start with  firms.

— Random utility shocks are private information!

— Simultaneously incumbents make exit decision and poten-

tial entrant makes entry decision. Let

 =
X
=1

1[=1]
+ 1[ =1]

this is the number of firms at end of period

• Payoffs (other than utility shock mentioned above

—  profit to each firm in the industry (including entrant, if

it comes in)



∗ Expect   +1.

∗ Maybe 1  22.

— Entry cost 

— Exit value 

• Transition +1 = 



Equilibrium

• Will define a symmetric equilibrium where firms in the same

state do the same thing

• Policy function of incumbent ̃( 0 1) choice given state
and two draws

• Policy function of entrant is similar ̃( 0  1 )

• Value functions  ( 0 

1) and 

( 0  

1 )

• Equilibrium: Values solve the Bellman equations, given the
policies. Policies are optimal given the Value functions and

that other firms following the policy rules



• Look at choice specific value functions

 ( 0 0) =  + 0

 ( 1 1) = [ + [
( )]| 1 = 1] + 1

 ( 0 0) = 0

 ( 1 1) = −+[ + [
( )]| 1 = 1] + 1

• Then

 ( ε) = max
n
 ( 0 0) 

( 1 1)
o

 ( ε) = max
n
 ( 0 0) 

( 1 1)
o

• Policy can be summarized by cutoff rules

̃  1 − 0 then ̃
( 0 


1) = 1, otherwise = 0,

̃  1 − 0, then ̃
( 0 


1) = 1, otherwise = 0



then incumbent (entrant) stays, where

̃ =  −[ + [
( )]| 1 = 1]

̃ = −+[ + [
( )]| 1 = 1]

• Let x̃ =
³
̃1 ̃


2 ̃


̄ ̃


1  ̃


2  ̃


̄

´
be a vector of cutoff

rule.

• Can use recursive methods for solve for an equilibrium.



Data

• See state of industry each period  and 

• Let  the the number of firms exiting each period, and

 the number of entrants

 =  −  + 

• So have data set (  ) = 1  

• Parameter vector  = (1 2 ̄  )

• What next?



— How implement a nested-fixed point approach?

— How implement a two-step approach? (Assumptions? Ad-

vantages?)



Related Game that is Simpler (throws out the dynamics)

• Incumbent firms simultaneously decide whether or not to pro-
duce in a period. Production not related to whether produce
today or not. Finally, sometimes only one gets to make the
decision. So the state is  = {1 2} where  is the count of
firms that can choice to be in .  is public information.

• Payoffs ( is number of producers)

stay out : 0
produce :  + 1

Where  extreme value

• Taking as given agent 2 uses rule produce if

21 − 20 = 2 ≥ ̃2(2).



• Let 1( 1|) be the choice specific value function for agent
1.

1(0 10| = 1 2) = 10

1(1 11|1) = 1 + 11

1(1 11|2) =  (̃2)1 + (1−  (̃2))2 + 11

Enter if

1(1 11|) ≥ 1(0 10|)

If  = 2, enter if

11 − 10 ≥ ̃∗1(̃2|2) ≡ − (̃2)1 − (1−  (̃2))2

Define

1(2) = −̃∗1(̃2|2)

If  = 1, enter if

11 − 10 ≥ ̃∗1(̃2|1) ≡ −1



Let’s plot ̃∗1(̃2|2): the optimal cutoff of firm 1 given behavior

of firm 2.

Assume for starters 2  1.



What if 2  1?. The cut-off solves:

̃∗1(̃2|2) ≡ − (̃2)1 − (1−  (̃2))2

̃1
̃2

=  (̃2) (2 − 1)

• When have multiple equilibria?



• Let’s say we have multiple equilibria. With two-stage ap-

proach (also called a partial solution approach) can remain

agnostic about which equilibrium the agents settle on. (As-

sume they play the same equilibrium across the data points.

Otherwise, unobserved heterogeneity that we come back to

below)

• Let’s estimate the CCP on a first stage.

• Using the expressions for the CCP, can invert to get utilities:

Pr(| ) =
exp(( ))

exp(0( )) + exp(1( ))

=
exp(( ))

1 + exp(1( ))



•

ln(Pr(1| ))− ln(Pr(0| )) = 1( )

•

1( 1) = 1

2( 2) = Pr(0|−  2)1 + Pr(1|−  2)2

•

 ( ) =  + log (exp(0( )) + exp(1( ))

• With estimates of 1 and 2 in hand, can ask whether there

is multiple equilibria, and if so, whether they are coordinating

on the good equilibrium or the bad one.



Big Picture

• Entry model above, can estimate vector 1, 2,...̄

• What is potentially interesting economics?

• Bring in market size. Think of a broader data set. Write

( ) for  firms and population.

• (   ) for markets , and time periods
 = 1 

• Breshahan and Reiss idea



— This literature has been influential. Use of revealed prefer-

ence to back out parameters related to entry. Later class

see an application to Wal-Mart



Now Generalize the Setup (Quick Overview of Ericson-Pakes Full
Model)

Give incumbents more to do. Not just staying in or out. But
get better somehow. But let’s discretize it. Make a continuous
decision  of investment. Let’s put in some aggregate state that
moves around (demand, aggregate costs)

• Each firm is in discrete state 

• Have some stage game with reduced form profits ( −).

— e.g. if have differentiated products oligopoly with de-
mand ( −  −) cost ( −), and some re-
duced from equilibrium price function  ( −1), then

( −) = [ ( −)− ( −)]
×(( −) −( −)  −)



• Make decision to exit and take  (let this be random now) or

invest at  and move state for next period.

• Ericson Pakes particular investment model:

Pr(|) =

1+

if  = 1

= 1
1+

if  = 0

and

0 =  +  −  (where  market)

• Incumbent’s problem, takes a given that other firms  are

obeying Markov policy rules  = (), and let  = (1 2 )

(if  firms)

 ( − ) =  ( −)+max
½
max


(  − )

¾
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where

(  − ) ≡ −+[ (0 0− 0)| −  −()]
and the solution to the above is  = ().

• Entrant (suppose for similicity):

 ( ) = max

(
0max


−−  + 

)

• A Symmetric Markov-Perfect Equilibrum: Investment Policy
functions ̃( −1), Entry rules, ( ), Exit rules
( − ), and value functions  ( − ), satisfying
the Bellman equations and optimality conditions above.

• Symmetry has bite, all differences in behavior coming through
differences in states.
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Illustrate Multiplicity with Example of Cournot Model with Fixed

Cost

• Look at Cournot example,  = 12 −  and suppose have a

fixed cost equal to  (paid if   0, otherwise if  = 0 is

avoided). Given output 2, firm 1 solves the problem:

Either 1  0 and 1 = argmax1
[12− 1 − 2] 1 − 

of 1 = 0 and  = 0.

So if 1  0, then reaction is

max (given positive) = 6− 2
2



So compare

1 = [12− 1 − 2]
∙
6− 2

2

¸
=
∙
6− 2

2

¸2
with fixed cost ∙

6− 2
2

¸2
= 

Let

6− 2
2

= 
1
2

̂2 = 12− 2
1
2

So

̃1(2) = 6− 2
2
, 2  12− 2

1
2

= 0, 2  12− 2
1
2,

• If  = 0, then unique equilibrium is 1 = 2 = 4. Both firms



earn 16.

• Suppose  = 15: Then have three pure strategy equilibria,

one symmetric, two asymmetric

• Suppose  = 17?


