
Dynamic and Stochastic Model of Industry

• Agenda motivated by facts about churning in industries

— Some firms grow in same industry where other firms decline

— In same industry, new firms enter while incumbents exit.

• Beyond the above fact, agenda produces a framework that is
in principle consistent with lots of different kinds of behavior

— Model with parameters of cost and demand and how they

change over time

— Model includes oligopolistic interactions



• Example of what to do with this this?

— Examine effects of policies (run counterfactuals), e.g. merg-

ers, environmental policies,...



Start Simple: Single Agent Problem

• John Rust Bus Engire Replacement problem. (More generally
think of a firm replacing a machine. For every replacement,

there is an exit of the incumbent machine and entry of a new

machine.)

• Time  = 1 2 

• Actions  = 

—  = 0 means keep current machine

—  = 1 means replace.



• State variables at time 

— Condition of incumbent machine . Let this be an inte-

ger, 0 ≤  ≤ ̄. When new it equals ̄ (“observed” by

us as well as agent)

— A utility shock to each choice (“unobserved state variable”

by us (agent making decision sees this)

∗ 0 utility shock to  = 0

∗ 1 utility shock to  = 1

∗ Standard to assume i.i.d. If we further assume that it

is Type I extreme value we obtain considerable analytic

tractability



• Transition probabilities Pr(+1| ) for incumbent machine

— If replace machine then +1 = ̄

— It don’t replace machine:

∗ One possibility is deterministic decay, +1 =  − 1, if
  0 and +1 = 0, if  = 0.

∗ In general, could make the transition stochastic (and
including even random improvements in condition).



• Payoffs (other than utility shock mentioned above

— 0 if keep current machine

— 1 if replace

— For example 0  +10, and 1 = 0 −  (where

 is the cost of replacement)



• Let  be a vector of parameters

— Includes payoffs,  and the transition Pr
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— Normalize the extreme value distribution to the standard-

ized value. This is w.l.o.g. since can rescale by   0

0 = 

0 = 

the  factors out and all decisions are the same. Suppose

directly observe the replacement cost(e.g.  =$10,000).

Then can define  = , and this gives us the utility

weight on money, given the normalization. (Equivalently,

could normalize  = 1, and then include a parameter to

rescale the .)

— Can thinking of this as an entry model, with  as the

entry cost. Perhaps we don’t observe it. But maybe we



observe  for two of the  states , e.g. ̄  ̄−1.
(Or the dollar value associated with this state which we

can multiply by ). In this way, we can back out the

entry cost. This is the big idea of the approach. Can use

revealed preferences to infer switching costs.



Facts about Logit Error Structure

• Extreme Value Type I.  has CDF

Pr (  ) =  () = exp(− exp(−))

• Suppose i.i.d. draws  and 0, then distribution of the differ-
ence is logistic

 ( − 0) =
exp(− ( − 0)))

1 + exp(− ( − 0)))

• Take a set of  choices and let return to choice  be

 =  + 

and choice be

∗ = max {1 2 }



Then the probability of choice  is

 =
exp()P

0=1 exp(0)

• Independence of irrelevant alternatives. Relative probability

do  instead of 0 is (independent of existence of other alter-
natives)


0

=
exp()

exp(0)

• Formula for maximum utility is

∗ = max {1 2 } =  + log

⎛⎝ X
=1

exp()

⎞⎠ (1)

where  ≈ 5772 is Euler’s constant.



• Expected value of  (unconditioned) is

[] = 

• Next, calculate expected value of , given choice .

[| = 1] =  − log() (2)



Back to the Replacement problem

• Use vector notation. Then write current state as ( ε). Let
(1,ε1) be the initial state (period 1). Also will leave depen-

dence on parameter vector  implicit for now.

 (1 ε1) = max
{123}
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• To construct the Bellman equation, define the choice specific
value function

̃ ( ε ) =  +0ε0[ (
0 ε0)| ] + 

=  +0[ε[
³
0 ε0)|0]| 
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So

 ( ε) = max
n
̃ ( ε 0) ̃ ( ε 1)

o



• Solve this problem recursively. We begin with a  ◦(· ··) and
use the Bellman equation to map to a new function  0(· ··).
We need a starting value and a good way to get this is to

temporarily assume there is a finite horizon and calculate the

return in the terminal period. Calculating a starting value this

way yields

 ◦( ε) = max
n
0 + 0 1 + 1

o
Using result (1) specified above

 ◦() ≡ ε [ ( ε)] = [ + log
³
exp(0) + exp(1)

´
the probability of replacement is

 ◦1| =
exp(1)

exp(0) + exp(1)
(3)



• Now take arbitrary  ◦( ε), define

 0( ε) = max
n
̃ 0( ε 0) ̃ 0( ε 1)

o
,

for

̃ 0( ε ) =  +0[ε[
◦ ³0 ε0)|0]| ´] + 

=  +0[
◦(0)| ] + 

• Iterate until convergence.



Estimation: Nested-Fixed Point Approach

• All of the above interative procedure is for a GIVEN . But

how estimate ?

• Estimate transition Pr(0| ) directly from the observed tran-
sitions in the data. Given assumption above, no selection

issues to worry about. (Would be an issue if there is mea-

surement error on ). Let’s say we have Pr(0| ) in hand,
and turn our focus to estimating .



• Nested fix point. Given , get fixed point of value function

iteration to get solve for  ( εθ). This gives of the choice
specific value function for choice .

̃ ( ε  ) =  +0[ε[
³
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and we can calculate the probability of choice , given ,

|() =
exp( +0[ε[
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=0 exp( +0[ε[ (
0 ε0 )|0]| )])

• Take data on choice of  given  and maximize the likelihood.

• More generally, let ̂ be an estimate of the conditional

probability of choice  given . Use some metric to pick 

so that |() is close to ̂.

• Issue about the “curse of dimensionality”



• Has led to “two-step” approaches that avoid the inter loop.



Two-Step Approaches

• Will start by going over the single agent problem above and

use the two-step method. This approach is due to Hotz-Miller

(1993).

• Want to say up front that the payoff from the two-step rather

than the nest-fixed-point really comes in big when we go to

oligopolistic interaction.

— That is where the curse of dimensionality bites hard. (If

 choices and  firms then  possible outcomes.

— Two-step approach is an end-run around the multiplicity

of equilibria issue which bits hard in oligpoly models. (Ba-

sically irrelevant in single-agent problems).



• Big idea. Start from the conditional choice probabilities

(CCP) estimated from the data in a first step.

— Now find parameters such that predicted behavior is con-

sistent with the observed behavior.

— Key advantage in oligopoly context is never have to calcu-

late the equilibrium even once!

∗ Agent is playing against other agents. Agent 1 needs

to make predictions about how Agent 2 behaves given

the state. How does that happen in the data? Can use

this when studying agent 1’s problem. So convert the

entire analysis to single agent decision theory.

∗ Of course this logic only works if when there a multiple
equilibria, only a single one is being played in the data.



How Two Step Procedure Works

Step 1: Estimate the CCP ̂, call the entire matrix d
Step 2:

• Given  at  = 1, and choice is , calculate discounted fraction
of time at state 0 in future periods. Note since we have ̂,
this will also give us the discounted fraction of time we are at

0 and choice is 0.

— Can do this by simulation (as in BBL), may be easiest.

Let 0| be discounted fraction of time at (
0) in future,

given at  now.

— Example of one simulated path. Let  index a particular

simulation. ( total number of simulations)



∗ Start at . Then use ̂ to draw 1, then use 
¡
0| 

¢
to draw 2 then ̂ to draw 2.

∗ Now take  and  and iterate this to get 

+1 and

+1. Stop after  periods

— Now have () for  simulations and 2 ≤  ≤  . Define

indicator function 1[] = 1 if event realized. Define

0| =
X
=2

−1
X
=1

1[()=
0]



• Note 00| doesn’t depend upon , so can do this once.

• Define the choice specific value function not including unob-
servated shock (leaving it out, so we can plug it into that logit



probability formulas)

̃(   d ) = 

+
̄X

0=0

1X
0=0
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00 +  − log(̂00
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• Next observe we have a mapping in the space of CCP

̂ =
exp(̃(   d ))

exp(̃( 0  d ) + exp(̃( 1  d ))
• Pick  to get this equation to hold as well as possibile.


