Say a little bit about De Loecker and Warzynski (AER 2012)

- Brings together Hall (1988) approach to marginal cost estimation with Olley-Pakes (1996) approach to production function estimation.
- $Q_{f t}=F_{t}\left(V_{f t}, K_{f t}\right) \Omega_{f t}$
- firm f, at time t
- $V_{f t}$ variable inputs, $K_{f t}$ fixed inputs facing adjustment costs
- $W_{f t}^{v}$ and $W_{f t}^{k}$ price of variable and fixed inputs
- Note Assumptions
- F_{t} twice continuously differentiable...
- Hicks Neutral productivity is log additive and firm specific
- Firms minmizes short-run costs taking output quantity and input prices are agiven.

Set up Lagrangian (leave $f t$ implicit)

$$
\begin{aligned}
L(V, K, \lambda)= & \sum_{v=1}^{V} W^{v} V^{f}+\sum_{k=1}^{K} W^{k} K^{k} \\
& +\lambda[Q-F(V, K, \Omega]
\end{aligned}
$$

The FONC

$$
\frac{\partial L}{\partial V^{v}}=W^{v}-\lambda \frac{\partial F}{\partial V^{v}}=0
$$

- $\lambda_{f t}$ is the marginal cost to firm f. Rearranging and multplying both sides by $\frac{V}{Q}$ yields

$$
\frac{\partial F}{\partial V^{v}} \frac{1}{W^{v}} \frac{V}{Q}=\frac{1}{\lambda} \frac{V}{Q}
$$

$$
\frac{\partial F}{\partial V^{v}} \frac{V}{Q}=\frac{1}{\lambda} \frac{W^{v} V}{Q}
$$

$$
=\frac{P}{\lambda} \frac{W^{v} V}{P Q}
$$

- Wanted

$$
\begin{aligned}
\text { marginal cost } & : \lambda \\
\text { markup } & : \quad \mu=\frac{P}{\lambda} \\
\text { output elasticity } & : \theta^{v}=\frac{\partial F}{\partial V^{v}} \frac{V}{Q} \\
\text { expenditure share } & : \alpha^{v}=\frac{W^{v} V}{P Q}
\end{aligned}
$$

because

$$
\theta^{v}=\mu \alpha^{v}
$$

- Write output a single-product firm f at time t in logs

$$
\begin{aligned}
q_{f t} & =f\left(x_{f t} ; \beta\right)+\omega_{f t}+\varepsilon_{f t} \\
& =f\left(v_{f t}, k_{f t} ; \beta\right)+\omega_{f t}+\varepsilon_{f t}
\end{aligned}
$$

- For
- variable inputs $v_{f, t}$ and fixed input $k_{f t}$.
- $\omega_{f t}$ structural error
$-\varepsilon_{f t}$ forecast error or measurement error.
- If have β can calculate θ_{t}^{v}. There are econometric issues in estimating β. Follow Levinsohn and Petrin (2003) and Olley and Pakes and use a control function approach.
- Let $m_{f t}=m_{t}\left(k_{f t}, \omega_{f t}, z_{f t}\right)$ be demand for materials ($z_{f t}$ include things like input pricess)
- Monotonic under mild conditions, so invert it, to $\omega_{f t}=$ $h_{t}\left(m_{f t}, k_{f t}, z_{f t}\right)$, so have

$$
q_{f t}=f\left(v_{f t}, k_{f t} ; \beta\right)+h_{t}\left(m_{f t}, k_{f t}, z_{f t}\right),+\varepsilon_{f t}
$$

- Let's use the translog functional form for $f\left(v_{f t}, k_{f t} ; \beta\right)$, and focus on a value-added version,

$$
q_{f t}=\beta_{l} l_{f t}+\beta_{k} k_{f t}+\beta_{l l} l_{f t}^{2}+\beta_{k k} k_{f t}^{2}+\beta_{l k} l_{f t} k_{f t}+\omega_{f t}+\varepsilon_{f t}
$$

- In the first stage run the following nonparametric regression:

$$
q_{f t}=\phi_{t}\left(l_{f t}, k_{f t}, m_{f t}, z_{f t}\right)+\varepsilon_{f t}
$$

and obtain estimates of expected output $\hat{\phi}_{f t}$ and an estimate for $\varepsilon_{f t .}$. Expected output given by
$\phi_{f t}=\beta_{l} l_{f t}+\beta_{k} k_{f t}+\beta_{l l} l_{f t}^{2}+\beta_{k k} k_{f t}^{2}+\beta_{l k} l_{f t} k_{f t}+h_{t}\left(m_{f t}, k_{f t}, z_{f t}\right)$

- Note for given values of β can solve out for estimate of $\hat{\omega}_{f t}$
- Second stage uses law of motion for productivity

$$
\omega_{f t}=g_{t}\left(\omega_{f t-1}\right)+\xi_{f t}
$$

- Orthgonality condition is that the innovation $\xi_{f t}$ is uncorrelated with $t-1$ information.
- For a given β run nonparametric regression of $\hat{\omega}_{f t}$ on $\hat{\omega}_{f t-1}$ and then construct $\xi_{f t}(\beta)$. Then form moments

$$
E\left(\xi_{f t}(\beta)\left(\begin{array}{c}
l_{f t-1} \\
k_{f t} \\
k_{f t}^{2} \\
l_{f t-1} k_{f t}
\end{array}\right)\right)=0
$$

- Once have estimate of β, off to the races...

