Say a little bit about De Loecker and Warzynski (AER 2012)

- Brings together Hall (1988) approach to marginal cost estimation with Olley-Pakes (1996) approach to production function estimation.
- $Q_{ft} = F_t(V_{ft}, K_{ft}) \Omega_{ft}$
 - firm f, at time t
 - V_{ft} variable inputs, K_{ft} fixed inputs facing adjustment costs
 - W_{ft}^v and W_{ft}^k price of variable and fixed inputs
- Note Assumptions

- F_t twice continuously differentiable...
- Hicks Neutral productivity is log additive and firm specific
- Firms minmizes short-run costs taking output quantity and input prices are agiven.

Set up Lagrangian (leave ft implicit)

$$L(V, K, \lambda) = \sum_{v=1}^{V} W^{v} V^{f} + \sum_{k=1}^{K} W^{k} K^{k} + \lambda \left[Q - F(V, K, \Omega)\right]$$

The FONC

$$\frac{\partial L}{\partial V^v} = W^v - \lambda \frac{\partial F}{\partial V^v} = \mathbf{0}$$

• λ_{ft} is the marginal cost to firm f. Rearranging and mult-plying both sides by $\frac{V}{Q}$ yields

$$\frac{\partial F}{\partial V^v} \frac{1}{W^v} \frac{V}{Q} = \frac{1}{\lambda} \frac{V}{Q}$$

$$\frac{\partial F}{\partial V^v} \frac{V}{Q} = \frac{1}{\lambda} \frac{W^v V}{Q}$$

$$= \frac{P}{\lambda} \frac{W^v V}{PQ}$$

• Wanted

$$\begin{array}{rcl} marginal\ cost & : & \lambda \\ markup & : & \mu = \frac{P}{\lambda} \\ output\ elasticity & : & \theta^v = \frac{\partial F}{\partial V^v Q} \\ expenditure\ share & : & \alpha^v = \frac{W^v V}{PQ} \end{array}$$

because

$$\theta^v = \mu \alpha^v$$

• Write output a single-product firm f at time t in logs

$$q_{ft} = f(x_{ft}; \beta) + \omega_{ft} + \varepsilon_{ft}$$

= $f(v_{ft}, k_{ft}; \beta) + \omega_{ft} + \varepsilon_{ft}$

• For

- variable inputs $v_{f,t}$ and fixed input k_{ft} .
- ω_{ft} structural error
- ε_{ft} forecast error or measurement error.
- If have β can calculate θ^v_t. There are econometric issues in estimating β. Follow Levinsohn and Petrin (2003) and Olley and Pakes and use a control function approach.

- Let $m_{ft} = m_t(k_{ft}, \omega_{ft}, z_{ft})$ be demand for materials (z_{ft} include things like input pricess)
- Monotonic under mild conditions, so invert it, to $\omega_{ft} = h_t(m_{ft}, k_{ft}, z_{ft})$, so have

$$q_{ft} = f(v_{ft}, k_{ft}; \beta) + h_t(m_{ft}, k_{ft}, z_{ft}), +\varepsilon_{ft}$$

• Let's use the translog functional form for $f(v_{ft}, k_{ft}; \beta)$, and focus on a value-added version,

$$q_{ft} = \beta_l l_{ft} + \beta_k k_{ft} + \beta_{ll} l_{ft}^2 + \beta_{kk} k_{ft}^2 + \beta_{lk} l_{ft} k_{ft} + \omega_{ft} + \varepsilon_{ft}.$$

• In the first stage run the following nonparametric regression:

$$q_{ft} = \phi_t(l_{ft}, k_{ft}, m_{ft}, z_{ft}) + \varepsilon_{ft}$$

and obtain estimates of expected output $\hat{\phi}_{ft}$ and an estimate for ε_{ft} . Expected output given by

 $\phi_{ft} = \beta_l l_{ft} + \beta_k k_{ft} + \beta_{ll} l_{ft}^2 + \beta_{kk} k_{ft}^2 + \beta_{lk} l_{ft} k_{ft} + h_t (m_{ft}, k_{ft}, z_{ft})$

- Note for given values of β can solve out for estimate of $\hat{\omega}_{ft}$
- Second stage uses law of motion for productivity

$$\omega_{ft} = g_t(\omega_{ft-1}) + \xi_{ft}$$

• Orthgonality condition is that the innovation ξ_{ft} is uncorrelated with t-1 information.

- For a given β run nonparametric regression of $\hat{\omega}_{ft}$ on $\hat{\omega}_{ft-1}$ and then construct $\xi_{ft}(\beta)$. Then form moments

$$E\left(\xi_{ft}(\beta) \left(\begin{array}{c} l_{ft-1} \\ k_{ft} \\ k_{ft}^2 \\ l_{ft-1}k_{ft} \end{array}\right)\right) = \mathbf{0}$$

• Once have estimate of β , off to the races...