De Loecker Eeckhout Unger

• Challenges of estimating production functions

Last class.

Data Strategy

- 10K filings of U.S. corporations as collected by compustat
- Accounting statements
 - sales
 - cost of goods sold (COGS)
 - Selling General and Administrative expenses (SG&A)
 - measures of capital
 - sometimes labor, but not always, so putting that in COGS
- This revision adds US Census

		ç	Sample A		Sample B			
	Acronym, var.	Mean	Median	Nr Obs	Mean	Median	Nr Obs	
Sales	SALE, PQ	1,922,074	147,806	247,644	5,894,779	578,912	28,116	
Cost of Good Sold	COGS, V	1,016,550	55,384	247,644	2,970,693	195,087	28,116	
Capital Stock	PPEGT, K	1,454,210	57,532	247,644	5,193,319	345,592	28,116	
SG&A	XSG&A, X	342,805	29,682	247,644	926,542	78,487	28,116	
Wage Bill	XLR, WL	1,093,406	130,486	28,116	1,093,406	130,486	28,116	
Employment	EMP, L	8,363	863	221,121	24,861	4,522	25,527	

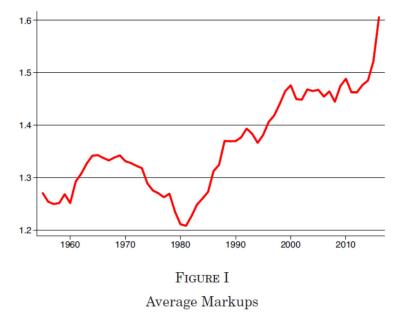
Table A.1: Summary Statistics (1955-2016)

Notes: Million USD deflated using the GDP Deflator with base year 2010. For each variable we list: the Compustat acronym, the associated notation (in levels) used throughout the manuscript.

Traditional Production Function with Fixed Costs

- Variable cost V and fixed K, plus F is overhead
- Estimate

$$\mu_{it} = \phi_{st}^V \frac{P_{it}Q_{it}}{P_{it}^V V_{it}}$$


Then

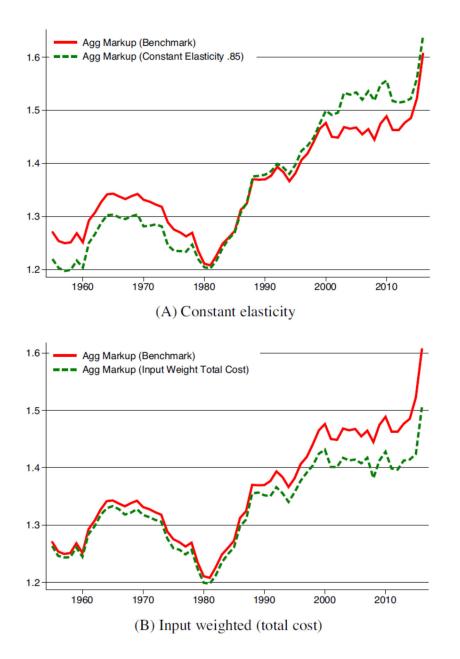
$$\mu_t = \sum_i m_{it} \mu_{it}$$

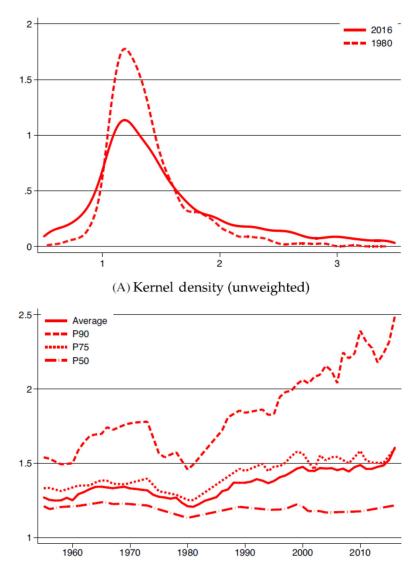
where m_{it} is market share

	Markup μ_i				Empl. L_i			
						thousands	millions	
	1020	1000	2000	2010	2016	2016	(2010 \$)	
1-800-FLOWERS.COM	1980	1990	2000	2010	2016	2016	2016 1,053	
ALKERMES PLC	•		1.41	3.37	6.66	2	669	
ALPHABET INC			•	2.50	2.23	72	81,025	
AMAZON.COM INC		•	1.19	1.13	1.50	341	122,058	
AMERICAN AIRLINES GROUP INC			1.17	0.98	1.31	122	36,064	
				0120	1101		00,001	
ANHEUSER-BUSCH COS INC	1.21	1.46	1.60					
ANHEUSER-BUSCH INBEV				2.43	2.83	207	40,855	
APPLE INC	1.51	1.90	1.18	1.39	1.50	116	193,059	
AT&T INC		2.31		1.83	1.53	269	146,989	
BRIGHT SCHOLAR EDU-ADR					1.36	6	140	
CAMPBELL SOUP CO	1.21	1.37	2.01	1.63	1.45	16	7,146	
CAVIUM INC				2.65	3.39	2	542	
COCA-COLA CO	1.58	2.32	3.17	2.86	2.54	100	37,575	
COSTCO WHOLESALE CORP		•	0.99	0.99	1.05	218	106,559	
DISNEY (WALT) CO		•	•		1.33	195	49,934	
DR PEPPER SNAPPLE GROUP INC				2.35	2.32	20	5,780	
GENERAL ELECTRIC CO	1.27	1.51		2.39	1.35	20	107,428	
GOODYEAR TIRE & RUBBER CO	1.15	1.17	1.12	1.00	1.31	66	13,605	
HARLEY-DAVIDSON INC	1.15	1.17	1.40	1.61	1.51	6	5,382	
HEWLETT PACKARD ENTERPRISE		1.15	1.40	1.01	1.31	195	44,989	
				•	1.01	170	11,505	
INTEL CORP	2.08	1.97	3.04	3.53	3.29	106	53,304	
JOHNSON & JOHNSON	1.85	2.76	3.38	3.05	3.55	126	64,526	
KELLOGG CÓ	1.45	1.88	2.03	1.68	1.54	37	11,653	
KRAFT HEINZ CO	1.41	1.55	1.60	1.50	1.60	41	23,774	
LEVI STRAUSS & CO	1.44	1.50	1.60	1.92	1.92	13	4,086	

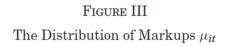
Appendix 4 A Selection of Firms' Individual Markups

Output elasticities θ_{st} from the estimated production function are time-varying and sector-specific (two-digit). The average is revenue weighted. The figure illustrates the evolution of the average markup from 1955 to 2016.

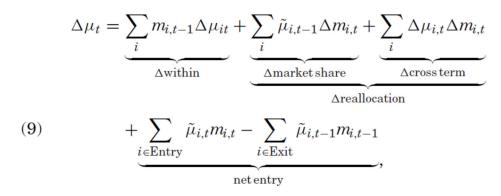

III.A. Aggregate Markups


The measure of markups in equation (7) is the product of the output elasticity θ and the inverse of the variable input's revenue share $\frac{PQ}{PVV}$. The latter is directly measured in the firm's income statement, and we estimate the former. Our estimated output elasticities are sector- and time-specific and thus capture technological differences across sectors and time.

We calculate the average markup as follows:

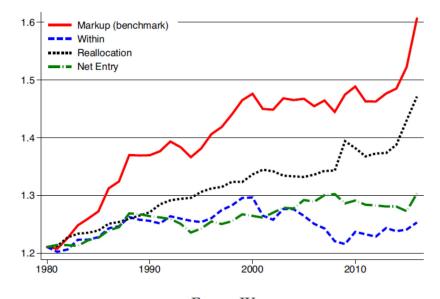
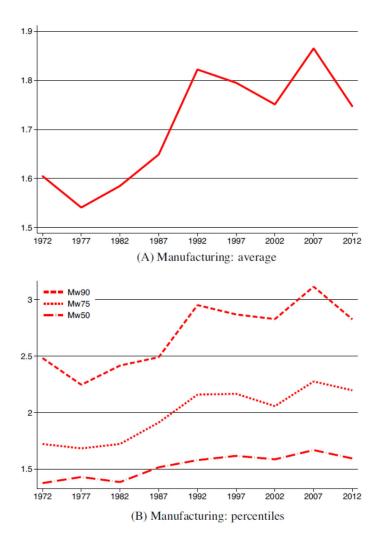

(8)
$$\mu_t = \sum_i m_{it} \mu_{it},$$

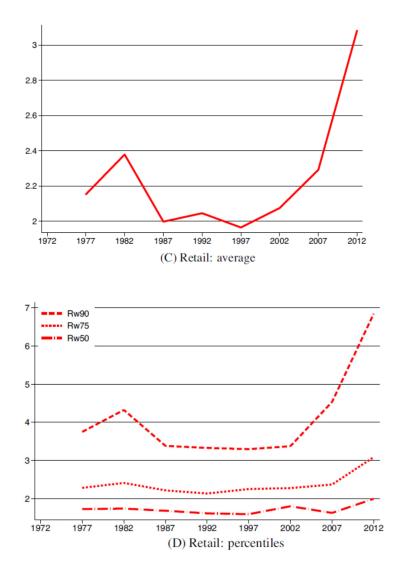
שטערווטאמפט ורטוח חונף:.//אכאמפוחוכ.oup.com//ge/ארווכופ/ ו גס/ בוס ו/ס/ ואו סט טע טעפגו טוו טנ

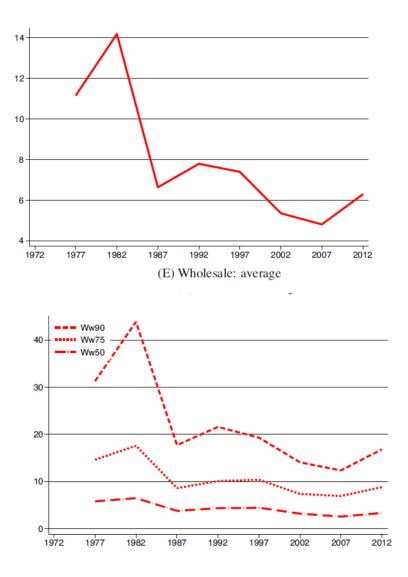


(B) Percentiles markup distribution (revenue weight)

follows:

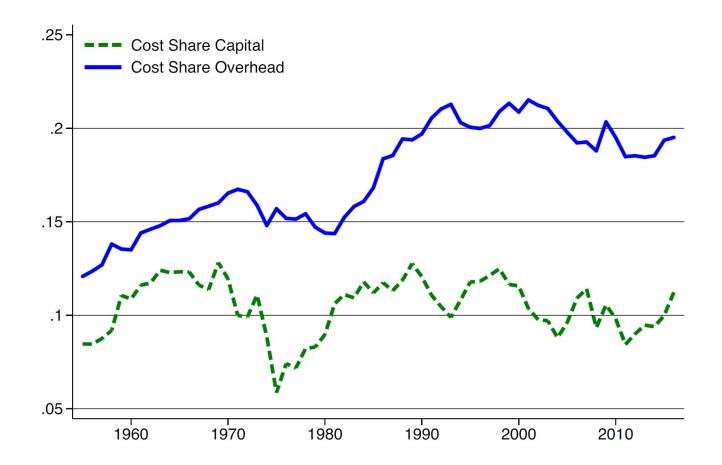



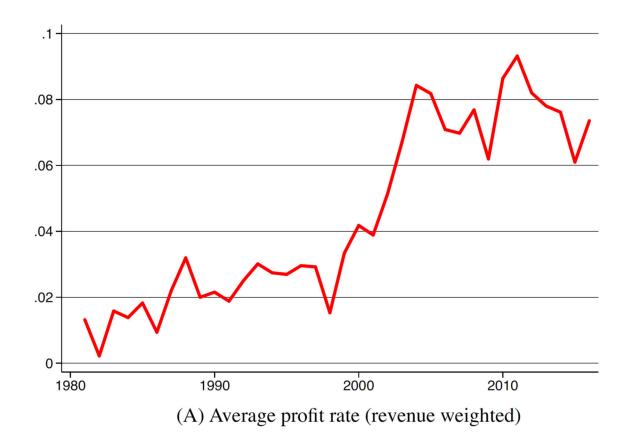

FIGURE IV Decomposition of Markup Growth at the Firm Level

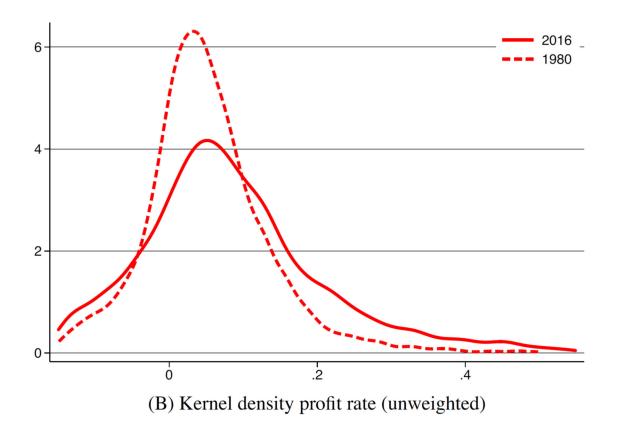

mat we estimated nom the publicity traded in ms.

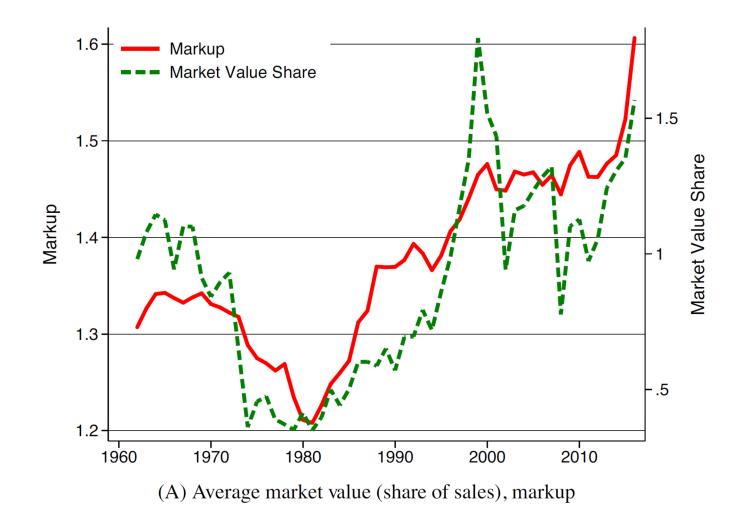
In the Census of Manufacturing, we use the cost shares to construct the output elasticity of any variable input (labor and materials) at the four-digit NAICS industry level (denoted by n) by census year.²⁹ This leads to the standard recovery of the output elasticity for the variable input:

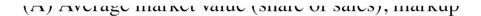
(12)
$$\theta_{nt}^{V} = N_{nt}^{-1} \sum_{j \in n} \frac{P_{jt}^{V} V_{jt}}{P_{jt}^{V} V_{jt} + r_{nt} K_{jt}},$$

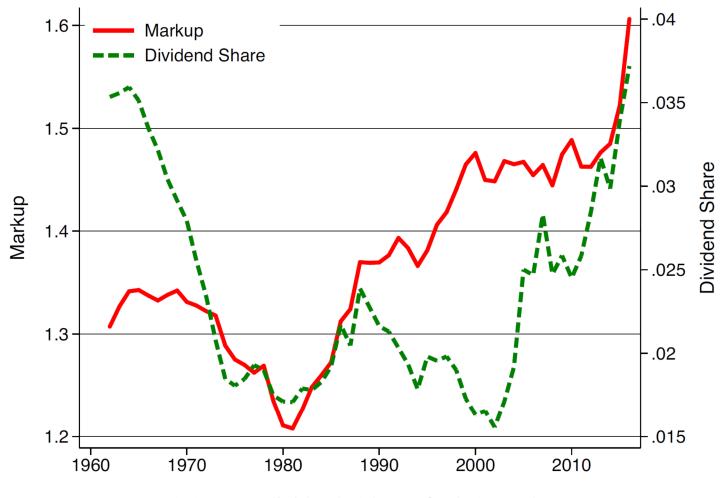



FIGURE VII


Aggregate Overhead and Capital Cost Shares of Total Cost


Let $\Pi_i = S_{it} - P_t^V V_{it} - r_t K_{it} - P_t^X X_{it}$ denote net profits, where $P_t^X X_{it} = F_{it}$ denotes expenditure on overhead as measured by SG&A and is equal to the fixed cost.³⁶ Then the net profit rate


$$\pi_{it} = \frac{\Pi_{it}}{S_{it}}$$
 can be written as:


(13)
$$\pi_{it} = 1 - \frac{\theta_{st}}{\mu_{it}} - \frac{r_t K_{it}}{S_{it}} - \frac{P_t^X X_{it}}{S_{it}},$$

(B) Average dividends (share of sales), markup

FIRM-LEVEL REGRESSIONS: MARKET VALUES AND DIVIDENDS ON MARKUPS									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
	$\ln\left(\frac{\text{market value}}{\text{sales}}\right)$				ln(market value)				
ln(markup)	0.71	0.64	0.56	0.17	0.71	0.65	0.58	0.27	
	(0.03)	(0.02)	(0.02)	(0.03)	(0.02)	(0.02)	(0.02)	(0.02)	
ln(sales)					0.81	0.81	0.83	0.68	
					(0.00)	(0.00)	(0.00)	(0.01)	
Year fixed effects		Y	Y	Y		Y	Y	Y	
Sector fixed effects			Y				Y		
Firm fixed effects				Y				Y	
R^2	0.05	0.13	0.21	0.68	0.68	0.71	0.73	0.89	
	$\ln\left(\frac{\text{dividends}}{\text{sales}}\right)$				ln(dividends)				
ln(markup)	1.05	0.97	0.80	0.26	1.03	0.93	0.78	0.26	
-	(0.04)	(0.03)	(0.04)	(0.05)	(0.04)	(0.04)	(0.04)	(0.05)	
ln(sales)					0.94	0.92	0.93	0.76	
					(0.01)	(0.01)	(0.01)	(0.02)	
Year fixed effects		Y	Y	Y		Y	Y	Y	
Sector fixed effects			Y				Y		
Firm fixed effects				Y				Y	
R^2	0.06	0.11	0.17	0.70	0.66	0.68	0.70	0.89	

TABLE II IRM-LEVEL REGRESSIONS' MARKET VALUES AND DIVIDENDS ON MARKUR

Note: Standard errors clustered by firm are in brackets.