Lecture 11(i)

Announcements

- Midterm results posted next week
- Sections this week will go over worksheet at Canvas on monopoly.
- HW 9 due next week.
- Thanksgiving week schedule (next week)
- Monday: class as usual for large lectures
- Wed: no class
- No discussion sections week of Thanksgiving

Lecture

1. Marginal Revenue of a Monopolist
2. Profit-Maximizing Monopoly
3. Inefficiency of Monopoly

Monopolist and Competitive Firm
How are they similar?

- Both try to maximize profit = revenue - costs
- So both set quantity where marginal rev. = marginal cost ($\mathrm{MR}=\mathrm{MC}$)

How different?
-When competitive firm sells more unit, price stays the same

- Marginal Revenue = Price
- Same as saying price taker
- When monopoly firm sells more price falls
- Marginal Revenue < Price

Lemonade Stand

Suppose can sell

- 1 at $P=\$ 1.00$
-2 at $P=50 \phi$
Sell second one, cash register rings up 50ф. Is this MR?

No!!!!

Sell one: Revenue = \$1.00
Sell two: Revenue = $.50+.50$
= \$1
So marginal revenue $=0$!
(Note: this is uniform price monopoly. Things are different if can price discriminate)

Widget Monopoly in Econland S1-S3 and S5-S10 deceased.

S4 has monopoly.
One change: now she can produce as many widgets as she wants at ATC $=4$. (So MC $=4$ too)

If perfect competition, then

- $\mathrm{P}=4$
- Note P = MC
- $Q=6$

But with monopoly, need to do something different.
Let's figure out Marginal Revenue

Marginal Revenue of S4

Q	P	Revenue	MR
0	10		
1	9		
2	8		
3	7		
4	6		
5	5		
6	4		
7	3		
8	2		
9	1		

Rules for MR of linear demand

- vertical intercept same as demand
- horizontal intercept is halfway

Picture is all you need for this class. But if you like an equation...

$$
\begin{aligned}
R e v & =P \times Q \\
& =(10-Q) \times Q \\
& =10 Q-Q^{2}
\end{aligned}
$$

Marginal Revenue is slope

$$
M R=10-2 Q
$$

What if demand looked like this?

So let's go back to S4's problem and figure out what she should do.

Put in MC to find optimal output

-Profit maximizing $\mathrm{Q}=3$

- Price that goes with this is $\mathrm{P}^{\mathrm{M}}=\$ 7$
-Profit $=[P-A T C]^{*} Q=[7-4]^{*} 3=9$
- See it on graph

Check that this is profit maximizing:

Q	P	Rev	Cost	Profit
1	9			
2	8			
3	7			
4	6			
5	5			

What if demand looked like this and $\mathrm{MC}=2$? Figure out the monopoly price and quantity.

Inefficiency of Monopoly

Just like a \$3 tax, But monopolist gets tax revenue!

	Comp. Monopoly	Change	
Q	6	3	-3
P	4	7	+3
CS	18	4.5	-13.5
PS	0	9	9
TS	18	13.5	-4.5

1. Monopoly results in a loss of CS of 13.5 from the higher price.
2. Part is a transfer from consumers to the firm. Called a monopoly rent
3. Part of consumer loss is deadweight loss of -4.5.
Too little output (condition 3 violation).

First Welfare Theorem does not hold when we have monopoly.
4. Can have additional social costs: Monopoly Rent Seeking Behavior Efforts to secure a monopoly

Example in Econland. Suppose give monopoly to first person in line. Suppose time costs $\$ 1$ hour. In equilibrium one person gets in line for 9 hours. All the monopoly rent is dissipated

In real world:

- Use of resources like the legal and patent system to keep out rivals.
- Time spent on lawyers is social waste (opportunity cost)
-Entry of too many real estate agents.
- Try to get the monopoly rent of too high a commission. But may end up selling only a few houses a year.
- Wait. Where is the monopoly?

Control of Multiple Listing Service (MLS)

