Lecture 9(iii) Announcements You should start "Supply" Worksheet at week 10 of Canvas.

Midterm Mon Nov 12, 7pm-8pm

 If conflict, register by Mon, (Nov 5), 4 pm to avoid late registration penalty. Email head grader, headgrader@gmail.com-Question and Answer Sessions
-Wed Nov 7: 4-5:30: Anderson 310
-Wed Nov 7, 7:30-9: Anderson 210
-Thur Nov 8 3:30-5 : Anderson 210

Lecture

1. Review: Short-run Supply of Firm
2. Long-run Supply of Firm
3. Long-run Supply of Competitive Industry
4. Short-run Supply of Competitive Industry

Short Run Supply of Competitive Firm

Rule:

- Find quantity such that $P=M C$
- Check that $P \geq A V C$ at that quantity, and then produce there.
- Otherwise shut down.

Short Run Supply Curve for S11

What happens when $\mathrm{P}=3$?
$P=M C$ at $Q=1$
$A V C=2$ at $Q=1$, so $P>A V C$
Profit $=R-T C$

$$
\begin{aligned}
& =P \times Q-F C-V C \\
& =3 \times 1-4-2=-3
\end{aligned}
$$

Compare with loss at $\mathrm{Q}=0$.

What happens at $P=.5$?

Here is a different example where AVC is first decreasing then increasing (your textbook has a graph like this)

Long Run Supply of Firm Supply when rent on factory is variable input

Long Run Supply of Industry With Free Entry

Suppose:

- Same Technology is available for all
- No barriers to entry
- Input prices to industry do not go up as the industry expands

Then in long-run equilibrium:

- Price equals $\mathrm{P}^{*}=$ MinATC
- Each firm produces quantity q^{*} where ATC is minimized
- Number of firms N^{*} is Demand at P^{*} divided by q^{*}.

Again:S11 Cost Structure

Long Run Supply of Industry

Again:S11 Cost Structure(FC = \$4)

Variable	Definition
$P^{L R}$	long-run price
$Q^{L R}$	long-run quantity
$q^{L R}$	output per firm
$N^{L R}$	number of firms

Long Run Supply

	Demand		
	D0	D1	D 2
$\mathrm{P}^{L R}$			
$\mathrm{Q}^{L R}$			
$\mathrm{q}^{L R}$			
$\mathrm{~N}^{L R}$			

First Welfare Theorem at Work Here

In long-run competitive equilibrium, $Q^{L R}$ is produced at in the minimum cost way (Efficient Production)

Short Run

Number of firms is fixed.

Suppose in long-run equilibrium at when demand is D 1 (so $\mathrm{N}=100$)

What is Short-Run Supply Curve?

Cost Structure

Price	Firm SR supply	Industry SR supply $(\mathrm{N}=100)$
3	1	
4	1.5	
5	2	
7	3	

For future reference, some points on ATC...

q	ATC
1	6
1.5	5.17
2	5
3	5.33
4	6

For midterm (and practice problem) I will either give a table like this. Or you find this information on the graph.

Cost Structure

Short-Run Supply (N=100)

Suppose start at D1 in long-run eq. Suppose shift to D2. In short run:
\qquad

```
\(\mathrm{q} \rightarrow\)
``` \(\qquad\)
```

firm profit $=[P-A T C] q$

$$
=[7-5.33] * 3=5
$$

```

Cost Structure

\section*{Short-Run Supply (N=100)}

Suppose start at D1 in long-run eq. Suppose shift to DO. In short run:
```

P}

```
\(\qquad\)
```

$\mathrm{q} \rightarrow$

``` \(\qquad\)
```

$$
\text { firm profit }=[P-A T C] q
$$

$$
=[4-5.17] * 1.5=-1.75
$$

```
```

