A sequence $V_0, V_1, V_2, ...$ in C(K) converges to $\hat{V} \in C(K)$ if for every $\varepsilon > 0$ there exists N_{ε} such that

 $d(V_n, \hat{V}) < \varepsilon$ for all $n \ge N_{\varepsilon}$.

A sequence $V_0, V_1, V_2, ...$ in C(K) is a **Cauchy sequence** if for every $\varepsilon > 0$ there exists N_{ε} such that

$$d(V_m, V_n) < \varepsilon$$
 for all $m, n \ge N_{\varepsilon}$.

The space C(K) is **complete** if every Cauchy sequence in C(K) converges to a point in C(K).

C(K) is a vector space with vector addition defined by (V+W)(k) = V(k) + W(k)and scalar multiplication (over the field of real numbers) defined

and scalar multiplication (over the field of real numbers) defined by $(\alpha V)(k) = \alpha V(k).$

A vector space is **normed** if it has a metric given by a norm d(V,W) = ||V - W||

where

$$\|\alpha V - \alpha W\| = \alpha \|V - W\|$$
 for all $\alpha \ge 0$.

C(K) endowed with the sup norm

$$\left\|V-W\right\| = \sup_{k \in K} \left|V(k) - W(k)\right|$$

is a **Banach space**, a complete normed vector space.

Let

 $T: C(K) \to C(K).$

Suppose that for any $V, W \in C(K)$,

$$\left|T(V) - T(W)\right| \le \gamma \left\|V - W\right\|$$

for some fixed γ , $1 > \gamma > 0$.

Then we call T a contraction mapping with modulus γ .

We want to show that the mapping T defined by

$$T(V)(k) = \max u(c) + \beta V(k')$$

s.t. $c + k' - (1 - \delta)k \le f(k)$
 $c, k' \ge 0$

maps continuous bounded functions into continuous bounded functions, that is,

 $T: C(K) \to C(K)$

and that T is a contraction mapping with modulus β .

Then

$$\begin{aligned} \left\| V_{n+2} - V_{n+1} \right\| &= \left\| T(V_{n+1}) - T(V_n) \right\| \le \beta \left\| V_{n+1} - V_n \right\| \\ &\left\| V_{n+2} - V_{n+1} \right\| \le \beta^{n+1} \left\| V_1 - V_0 \right\|. \end{aligned}$$

The sequence of value functions $V_0, V_1, V_2, ...$ in C(K) generated by value function iteration $V_{n+1} = T(V_n)$ is a Cauchy sequence and therefore converges to a value function $\hat{V} \in C(K)$ that satisfies the Bellman equation

$$\hat{V}(k) = \max \ u(c) + \beta \hat{V}(k')$$

s.t. $c + k' - (1 - \delta)k \le f(k)$
 $c, k' \ge 0.$

How do we show that the mapping T defined by

$$T(V)(k) = \max u(c) + \beta V(k')$$

s.t. $c + k' - (1 - \delta)k \le f(k)$
 $c, k' \ge 0$

is a contraction mapping?

Blackwell's sufficient conditions

Theorem: Let B(K) be the space of bounded functions $V : K \to R$ with the sup norm. Suppose that the mapping $T : B(K) \to B(K)$ satisfies that conditions

1.(monotonicity) If $V, W \in B(K)$ and $W(k) \ge V(k)$ for all $k \in K$, then

 $T(W)(k) \ge T(V)(k)$ for all $k \in K$.

2.(discounting) There exists β , $0 < \beta < 1$, such that

 $T(V + \alpha)(k) \le T(V)(k) + \beta \alpha$ for all $V \in B(K)$, $\alpha \ge 0$, $k \in K$.

Then T is a contraction mapping wit modulus β .