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Abstract. Over the past decade economists have employed the mathematical tools of differential
topology to investigate the comparative statics properties of general equilibrium models. In
this paper we develop the appropriate concepts of regularity and fixed point index for econo-
mies that allow a wide variety of tax and subsidy schemes. As part of the analysis, we provide
a proof of existence of equilibrium that is both simpler and more general than any given
previously. Conditions that ensure local uniqueness and continuity of equilibria are not at all
restrictive; they are satisfied by almost all economies. Unfortunately, it seents that conditions
that ensure global uniqueness of equilibrium in these economies are even mare elusive than in
economies without distortions. This work should be of particular relevance to researchers
who emplay empirical general equilibrium maodels o do policy evaluation.

Les propriétés des modéles de fiscalité en statique comparative. Au cours de la derniére
décennie, les économistes ont utilisé |'outillage mathématique de la topologie différentielle
pour éwudier les propriétés des modeles d’équilibre général en statique comparative. Dans ce
mémuoire, 1'anteur développe les concepts de régularité et d’indice de point fixe pour des
écanomies qui permettent I'existence de tout un éventail d’arrangements fiscaux. L'analyse
produit, entre antres choses, une preuve de D'existence de 1’équilibre qui est i la fois plus
simple et plus générale que celles disponibles jusqu’ici. Les conditions qui assurent des
équilibres localement uniques et continus ne s’'avérent pas tellement restrictives; ¢lles sont
satisfaites par presque toutes les économies. Malheureusement, il semble que les conditions
qui assurent un équilibre global unique dans ces économies soient encore plus insaisissables
que celles qu'on cherche dans des économies sans distorsions. Ce travail sera d'un intérét
particulier pour les chercheurs qui utilisent des modéles empiriques d'équilibre général pour
faire 1"évaluation de politiques.

INTRODUCTION

Over the past decade econaomists have employed the mathematical tools of differen-
tial topalogy to investigate the comparative statics properties of general equilibrium
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models. Debreu (1970) initiated this line of research with his definition of the con-
cept of a regular economy, an ecanomy whose equitibria are locally unique and vary
continuously with its parameters. He proved that almost all economies are regular.
(The phrase ‘almast all’ is, of course, given a precise mathematical meaning.) Dierker
{1972) and Varian (1975) used the concept of a fixed point index to develop condi-
tions that are both necessary and sufficient for a regular economy to have a unique
equilibrium.

The work of these researchers was devoted to pure exchange models. More recently,
Mas-Colell (1978) and Kehoe (1980, 1983) have extended the concepts of regularity
and fixed point index to models with very general production technologies. In this
paper we further extend these results to models that allow a wide variety of tax and
subsidy schemes. As part of the analysis, we provide a proof of existence of equili-
brium for such models that is both simpler and more general than those given pre-
viously by, for exampie, Shoven and Whalley {1973) and Todd (1979). A number of
other researchers have studied the properties of general equilibrium models with
taxes: Mantel (1973) and Shafer and Sonnenschein (1976) have provided very gene-
ral existence theorems; Fuchs and Guesnerie (1983) have used differential topology
to study the properties of a general equitibrium model with a decreasing returns pro-
duction technology. Our approach differs from those of these researchers, however,
and is more in line with that of Shoven and Whalley and Todd, in that it is intended for
researchers who employ empirical general equilibrium models to do policy analysis.

To understand better the issues that we address in this paper, let us first consider a
simple economic model specified by a system of r equations.

f(T o Tt ) =0, i=1,..,n M
Here 7, i = 1, ..., 1, are the endogenous variables, the prices of » goods, and ¢,,
i =1, ..., m, are the exogenous variables, the tax parameters. The r equations

can be thought of as requiring that demand minus supply equal zero. This system
of equations can be written more compactly in vector notation as

Az, 1y = 0. (2)

Suppose that, for a fixed vector of tax parameters 19, the vector of prices 7@ solves
(2), in other words, is an equilibrium price vector. There are a number of questions
we could ask: for example, is n2 locally unique? That is, would any small change in
prices drive the system into disequilibrium? It is crucial for comparative statics anaj-
ysis that the answer to this question be yes; otherwise, the specification of the model
does not suffice to determine the values of the endogenous variables even locally. We
could also ask whether the vector of equilibrium prices varies continuously with the
tax parameters. Again an affirmative answer to this question is crucial. Continuity
would mean that smalf errors in specifying the changes in taxes, or even in specify-
ing the other parameters of the model, would not have a drastic effect on equilibrium
prices.

Classical calculus techniques of the sort used by Hicks (1939) and Samuelson
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(1947) provide answers to these questions. A sufficient condition for affirmative
answers to both questions is that the n X » matrix of partial derivatives

(Affam }(x9, 19 ... (af /dn, )(x0, 19

(6)‘_,“!6 T, (af,‘}a T, (70, 19

be non-singular. In matrix notation we denote this matrix as Df,(x®, t9). If Df (%9, t9)
is non-singular, then the inverse function theorem implies that z° is a locally the only
equilibrium. The non-singularity of this matrix intuitively means that there are locally
enough independent equations f; to determine the unknowns . The implicit func-
tion theorem implies that for any small change in ¢ there is a function «(f) such that
Fix(@), ) = 0. In fact, we can compute the partial derivatives of w (¢}, the compara-
tive statics multipliers, by inverting Df,(x9, 9):

fx@), 1y =0

Df(x(t), t) D (t) + Df(x(t), £) = 0

Df (z°, 19 D7, (1% + Df(7%, 1% = 0

Dx,(t% = —(Df(x°, 1) Df(x9, 1°). A3)

There are other interesting questions that calculus techniques by themselves can-
not answer: For example, does a vector of equilibrium prices exist for a given vector
of tax parameters? If it does exist, is it unique? Affirmative answers to these ques-
tions are no less crucial than they are to the earlier ones. Existence of equilibrium can
often be established by an appeal te Brouwer’s fixed point theorem, which states that
any continucus function g that associates any point in a set with another point in the
same set has a fixed point # = g(7) if the set is non-empty, compact, and convex.
Suppase that we can express the system of equations (2) as

T — gz, ) =0, ' 4)

where, if 7 is an element of some compact convex set S, then g(x, ¢} also is. Then
Brouwer’s fixed point theorem asserts the existence of an equilibrium. This conelu-
sion can be motivated by a simple graph in the case where n = 1 and the price set is
the closed interval [0, 1]. Here we are asserting that the graph of g must cross the
diagonal, where # = g{m, t). (See figure 1.) Furthermore, Scarf’s (1973) fixed point
algorithm, dr one of its more recent variants, can be used to compute an equilibrium
for the maodel.

Mare can be said: Suppase that neither 0 nor 1 is a fixed point of g and that the
graph of g never becomes tangent to the diagonal. Then the graph of g must cross the
diagonal at least once from above. After that it crosses once from below for every
additional time it crosses from above, Let us associate an index + 1 with a fixed point
« if the graph of g crosses the diagonal from above and an index —1 if it crosses from



The comparative statics properties of tax models 317

+1

+1

FIGURE 1

below. This index can easily be computed by finding the sign of the expression
1 — (8g/d7){%, t). The index theorem says that the sum of the indices of all equilib-
ria is + 1. Consequently, there is an odd number of equilibria, and, if index (%) = +1
at every equilibrium, there is only one equilibrium. Furthermore, if index () = —1
at any equilibrium, there must he multiple equilibria.

In the case with n goods, index () can be computed by finding the sign of det
(I — Dg (%, 1)), where [ is the n X n identity matrix. We have already argued
that, if this expression is non-zero, then the equilibrium # is locally unique and
varies continuously with ¢. The index theorem tells us this expression is also crucial
for conditions that guarantee the unigueness of equilibrium.
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THE MODEL

Let us begin by describing a simple economic model that allows for preduction and
various tax and transfer schemes. The taxes may be taxes on consumption and pro-
duaction that are ad valorem or specific and income taxes that are linear or non-linear.
The revenue generated by these taxes is distributed to consumers, one of whom may
be a government. We initially describe a model in which the government only taxes
and spends. We later extend our analysis to a model that allows a wide variety of
subsidy schemes.

There are n goods in the model. The responses of consumers to an n + 1 vector
of prices and tax revenue (, r) are aggregated into an excess demand function £ :
(R,"N{0) X R, = R". Here R," ™ {0} is the set of all non-negative price vectors
except the origin. To keep our presentation as simple as possible, we assume that £
is arbritrary, except for the following assumptions:

(A.1) £is C! {continuously differentiable).
(A.2) EQnm, Ar) = £(w, #) for any X > 0; that is, £ is homogeneous of degree zera,
(A.3) £ is bounded from below by some —w, we R, ".

(A4) | &=z, )| > e as r'— o forany 7 € R,* N0}

The tax payments generated by consumption and income taxes are specified by a
function £ : {R,"\{0}) X R, — R,. Tax payments are expressed in the same units
as expenditures, =, £,(x, r). They are, or course, subject to whatever normalization
we impose on prices. We assume that ¢ satisfies

{A.5) ris CL.

{A.6) tOvr, M) = Ne(m, r) forany A > 0; that is, ¢ is homogeneous of degree oné.
In addition, we assume that £ and ¢ satisfy a modified version of Walras's law:
(A7) w'l(n, 1) + =, 1) = r.

As in a model without taxes, Walras's law can be justified by adding up the budget
constraints of all the individual consumers.

To get some intuition for the content of the above specification, consider the
following example of consumption and income tax schemes in an economy with
h consumers: Consumer j has an income that consists of the value of his initial
endowments, »,* 7w,’, and his share of tax revenue, 8,r. Here the share coefficients
8,7 =1, ..., h, are non-negative and sum to one. If, for example, 6, = 1 while
& =0, = .. =40, =0, then the ath consumer is the government. The endow-
ment income of consumer § is taxed at a rate of 1 > p; 2 0. The final demand for
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commodity i by consumer j is taxed at a rate of 7, 2 Q on its value. The problem that
faces the consumer is

max w;(x,’, ..., x,')

5.t. Z m(l + rl-j-}x!-" £ (L~ pg) Z Tw,! + g, )]
i=1 i=1
20

]

where u; 1s a strictly concave and monotenically increasing utility function.

The individual’s excess demand functions £/ (x, r) = x,/(x, ¥) — w,’ that are
derived by solving this problem are continuous, at least for strictly positive prices,
homogeneous of degree zero in 7 and #, and bounded from below by —w/ = —(w/,

., w,%). The aggregate excess demand function £(x, r) = j-‘= (i (m, r) has the
property that for any = € R," \ [0}, [|(x, #')|| — o0 as r* = 0. This condition means
that, everything else being equal, if tax revenue becomes arbitrarily large, then the
income of at least one cansumer (the government) becomes arbitrarily large, which
then implies that excess demand for some good becomes arbitrarily large. Debreu
{1972) and Mas-Colell (1974) have shown that assuming that the aggregate excess
demand function is continuousty differentiable rather than merely continuous is not
very restrictive. Furthermore, Kehoe (19820) has shown that assuming £ to be con-
tinuous even when some, but not all, prices are zero is not a substantive assumption
for our purposes.

In this model

n

h " h
Ha,ry= 2 p 2 awl + 2 2 amxl(m,ry. 6)
=l i=1 j=l i=t

Notice that ¢ is C! as long as the x,/ are, and homogeneous of degree one as long as
the x, are homogenous of degree zere. Furthermore, since each individual demand
function satisfies the budget constraint with equality, £ and r satisfy Walras’s law,

Specific taxes on consumption as well as income tax rates and revenue-shares that
vary with income ¢an also be included in this framework. Care must be taken, however,
to ensure that £ and ¢ satisfy the relevant homogeneity properties. Consider for example,
an economy with a specific tax rate 7; on consumption of commeadity i by consumer
j-Ifweseti(w, r) = Z:,?,]Z;‘erﬂxﬁ(r, r}, then t is not homogencous of degree
one. Instead we could set1(m, r) = q(7) - (D =y7yx, (7, r), where g(7) is some
price index that is homogeneous of degree one in prices. Here g(w)7; is the specific
tax rate. For example, g(wr) = 7, requires that taxes be denominated in terms of the
price of commadity 1, which serves as a numeraire; g{x) = > _y,7 denominates
taxes in some ‘real’ terms, that is, in terms of some price index. On the other hand,
we do not want income tax rates or revenue shares to change if all prices are multi-
plied by a positive scaler. For example, if p : &, — [0, 1) corresponds to a progres-
sive income tax schedule, we would want g to vary with (Eﬁlw‘-wﬁ)a’q(w) rather
than Z’f:ﬂf :Wff_
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It should be stressed that we are not requiring that specific taxes or incomes taxes
be fully indexed in any sense; only that they be denominated in terms of the price of
some commodity or bundle of commaodities. Subsequently, we normalize prices so
that Z?=;7ff = 1. If we do not explicitly denominate taxes in terms of some prices,
then we are implicitly denominating them in terms of the price index > r_ . If
some good in the model is called money, then we can denominate taxes in terms of
its price; it is meaningless to talk of taxes not being denominated in terms of some price
index.

We initiaily specify the production technology by an n X m activity analysis matrix
A. Later we indicate how our results can be extended to more general technologies.
We assume that A satisfies

(A.8) Aincludes r free disposal activities, one for each commaodity.
{A.9) No output is possible without any inputs; equivalently,
xeRlx=Adyy 20 N R, = {o}.

Production taxes are specified by an 1 X m matrix A* that satisfies
(A.10} A* € A

Let the output or input of commodity i in activity j be taxed at a rate of 7, 2 Qonits
value. We construct A* by setting a,* = a; — 7,la,|. The revenue generated by
production taxes at prices 7 € R,” {0} and activity levels y e R," is 7/(4 —
A%y 2 0. We can specify specific production taxes similarly as long as the price
index that denominates taxes is linear in #. We assume that there are no taxes, ad
valorem or specific, on free disposal activities.

An eguilibrium of an economy (£, t, A, A*) is defined to be a vector (#, ) that
satisfies the following conditions:

(E.1) #'4* < 0.
(E.2) £(#, F) = A for some § 2 0.
(B.3) F = (7, F) + #'(Ad — A%).
(E4) #'e = 1, where e = (1, ..., 1}.

Notice that conditions (E.2) and (E.3), together with Walras’s law, imply that
Ay = #'E(R, F) = F — (R, F) = #'(4 — A*). Consequently, #'4*) = 0,
which, together with (E.1), implies that after-tax profits are maximized at equilibrium.
(E.2) is the requirement that consumer excess demand can be supplied. (E.3) stipu-
lates that disbursals of tax revenue equal tax receipts. This equilibrium condition can
be thought of a5 the government’s budget constraint. We need to use it as an equilib-
rium condition rather than as an identity, because the levels of expenditure, which
depend on government income, need to be known before tax receipts can be caleulated.
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(E.4} is a normalization that we are permitted by the homogeneity of £ and ¢. (E.1}
and the free disposal assumption, which imply that equilibrium prices are non-negative,
allow us to restrict our attention to the simplex S = {r € Rizx'e = 1, = 2 0}. The
advantage of using § as the price domain is that it is compact and convex. We want
the set of all (=, #) that satisfy (E.1)-(E.3) to lie in a compact convex set. (A.4} says
that | £(1r, #')|| = o0 as ¥ oo for any 7 € 5. On the other hand, (A.3) and (A.9) imply
that the production possibility set {x € R"x = Ay 2 —w, y 2 0} is bounded and,
therefore, that there exists some o > O such that x| < « for any vector in this set.
Consequently, we can find some 8 > Osuchthat |£(x, r)|| Z ¢if reSandr 2 8. In
searching for equilibria, we consider the set § x [0, 3]; it contains all the equilibria
of (£, ¢, A, A*).

An economy is defined to be a quadruple (£, £, A, A*) that satisfies (A. 1)-(A. 1),
We give the space of economies oI the topological structure of a metric space by
defining the concept of distance between two economies. We endow the space of
excess demand functions with the uniform C! topology: £ and £2 are close if their
values and the values of their partial derivatives are close everywhere on the compact
set § x [0, A]. Similarly, we endow the space of tax functions with the uniform C!
topology. We endow both spaces of activity analysis matrices with the standard
topology of R™™: A3 and A? are close if their columns are close in euclidean terms.
Titself receives the induced product topology: twa economies are close if all their
components are close.

We give the space of economies a topological structure because we subsequently
want tg talk about properties that are satisfied by almost all economies. The phrase
‘almost all’ is taken to mean all economies in an open dense subset of the space of
economies. That a subset is open means that any small perturbation in an economy
in the subset produced another economy in the subset. That a subset is dense means
that any economy in the space that is not in the subset can be approximated arbitrarily
closely by an economy in the set. To make sense of phrases such as “small perturbation’
and ‘arbitrarily close approximation,’ we use the topological structure defined above.

EXISTENCE OF EQUILIBRIUM

To prove the existence of equilibrium for our model we define a continuous mapping
of § x [0, 4] into itself whose fixed points are equivalent to the equilibria of (£, 7, A,
A*). For any (7, r) we define g (7, r} to be the vector (p, ¢} that solves the problem.

min V2 ((p — 7 — &=, 1))p —« — &7, r)) + (g — (7, 1))
st.p'Ad—(1 +qg—rr'd - A% £ 0

pe=1

0<gg8 7

Sirnilar least-distance mappings have been used by Eaves (1971) and Todd (1979) to
prave the existence of equilibrium for other models.
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(A.9) implies that the constraint set is non-empty. Since we have assumed that
there are no taxes on the disposal activities, (A.8) implies that it is a subset of
S > [0, B]. It is also closed and convex and varies continuously, as a point-to-set
correspandence, with (r, r). Therefore, since the objective function is strictly con-
cave, g(m, r) is a continuous function. '

THEORM 1. (£, F} €§ x [0, 8] is an equilibrium of (¢, t, A, A%} if and only if
(7, F) = g(&, ).
Proof. The Kuhn-Tucker theorem implies that (p, g) = g(m, r), that is, (p, gq)

solves (7) if and only if there exists an m X 1 vectory 2 0and scalers g, ¥ 22 Oand
X such that

p—m—Em, )+t Ay + he =20 (8)
g —tmr)—7d—-A¥)y —p+v =0 ©)
The complementary slackness conditions are
Pp'A-0+qg-ne'id-A%))y =0 (10)
g =0 an
g —¢q) =0 (12)

Suppose that (&, #) = g(#, ) and, for the moment, that i = 5 = 0. Since (f, #)
satisfies the constraints of (7}, #'4* € 0 and ©'e = 1. We therefore need prove
only that (z, ) satisfies (E.2} and (E.3) to demonstrate that it is an equilibrium. We
begin by pre-multiplying (8) by ©' to produce

~FEE,FY + B'Ay + X = 0. (13}
Notice that (10) becomes ©'A*) = 0. Using this condition and Walras's law, we obtain
—PAHIF, P RA - A+ A =0 (14}

Adding this equation to (9) yields
A =0. (15}

(8} and (14) now hecaome the desired equilibrium conditions.

Since t{(m, ¥} + (A ~ A*)y 2 Oforany (w, r}e§ % [0, Sland any v 2= 0, we
are justified in ignoring the possibility that i + 0. Consider, however, the case where
(%, #)isafixed pointof gand # > 0. We can use the abave reasoning to demonstrate
that —£(#, 8) + Ay > 0 at such a point, which would contradict our choice of 5.
Consequently, there are no fixed points where 5 > Q.

The converse, that any equilibrium is a fixed point, is easily demonstrated by
making the proper choice of $ and setting A = A = # = 0 in (8) and (9).

Since § x {0, 8] is non-empty, compact, and convex, and g is continuous,
Brouwer’s fixed point theorem implies the existence of a fixed point of g and, hence,
an equilibrium of (£, ¢, A, A*).
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REGULAR ECONOMIES

Proving the existence of equilibrium demonstrates the logical consistency of our model.
To do comparative statistics we would want to know more. When are the equilibria
of the madel locally unique? When do they vary continuously with the parameters of
(£, 1, A, A*)? When is there a unique equilibrium? In this section we consider the
first two questions; in the next we consider the third.

The traditional approach to comparative statics, as developed by Hicks (1939)
and Samuelson (1947), involves application of the inverse funetion theorem and implicit
function theorem of differential calculus to equations that determine an equilibrium.
If B is the matrix of activities in use at an equilibrium (7, r), then these equations,
given by (E.1)-(E.3}, are

B¥g =0 (16)
Em,ry —By=20 (7
t(w,r) —r + 7' (B — B*)y =0, {(18)

The first step is to count equations and unknowns. if Bisn X k, therearen + &k + 1
equations in the n + k& + 1 unknowns 7, r, and y. Walras’s law implies that one of
the equations in (17) or (18) is extraneous; homogeneity implies that one of the variables
in (w, r) is extraneous. Suppose we eliminate (18} from the system and, if # > 0,
normalize nominal values by setting » = 7. The inverse function theorem then says
that, if the Jacobean matrix

B 0
[ @)
is non-singular, then the remaining equations are locally independent and determine
the values of the unknowns # and y. The implicit function says that if this same
condition is satisfied, then 7 and y vary smoothly as we vary parameters of the economy.
We are not explicit about what these parameters are. They can in fact be any parame-

ters that describe an element of the infinite dimensional space of economies 7.
Theorem 1 gives us an alternative to (16}-(18) for determining equilibria:

(r,7) — g(w,r) = 0. Q)

To apply our analysis te this system of equations we need to ensure that g is differen-
tiable at all its fixed points. We can do this by imposing three additional assumptions
on (¢, ¢, A, A*):

R.1) #(z, r) > 0 forall(m,r) e S x [0, B].

(R.2) No column of either A or A* can be represented as a linear combination of
fewer than  other columns.

(R.3) Every activity that earns zero profit at equilibrium is associated with a positive
activity level.
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(R.1) impliesthat # > 0 at every equilibrium; (R.2) implies that both B and B* have
full column rank; and (R.3) implies that the & x { vector ¥ that satisfies £(%, /) = By
is strictly positive. (R.1) does nat rule out subsidies; it merely requires that, for
any values of prices and revenue, taxes outweigh subsidies. As we have mentioned,
we later relax this assumption to allow more general subsidy schemes.

If (£, £, A, A*) satisfies (R.1)-(R.3)}, then we can write out the conditions that
determine (p, q) = g(=, r) in some neighbourhood of an equlibrium as

p—7 —Em,r)+By+re=20 20
g —t(xm, r) — 7B~ B¥y =40 (22}
p'B—(1+qg—-nrn'(B—B*) =0 (23)
ple=1 24)

for some y > 0 and some A.

The implicit function theorem says that if the Jacobean matrix of this system with
respectto p, g, y, and A is non-singular, then these variables vary smoathly as func-
tions of 7 and r. Moreover, we can compute the partial derivatives of these functions
at (%, 7) by solving

I 0 B e Dp;  Dp;
0 1 #'(B*—B) 0 Dg,  Dg;
B (B* - B)'F 0 0 Dy, D\,
e’ 0 0 0 D), D\,
1 + Dg,;: DE?
_ D, __ y'(B — B¥)' D, 25)
(1+§— 7B - B*¥Y (Bx—-BY+ |-
0 0
Let
- B e] G = [ I+ Dg, D,
B —#'B o>~ 7 | b, + 5B — BYY De.|’
_ [(B — B*y —B'ﬁ]
P dl

Further let z denote the (k + 1) X 1 vector (y, A}. (25) can be rewritten as
! C Dg, ;,] _ [ G]‘
[c' o] [Dz(ﬁ, i (26)

(R.2) implies that C has full column rank, since B has full column rank and #'B —
T'B = 0, while #’¢ — 0 = 1. Consequently, we can solve (26} to obtain

Dgn =0 - CC'CY'CHG + CC'C)'F. 27
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To compare this approach with the previous one, we compare det (f — Dg; ;)
with det (J). Notice that, since €’'C is positive definite and bence non-singular, we
can write

det ({ — Dgy ) = det (C'C)7" det

[1 ~ (I ~ C(C'CY'CNYG — C(C'CY'F C]
0 cecl. o8

We can perform elementary row and column operations on the matrix on the far right
of this expression without changing its determinant. First, subtract the second
column post-multiplied by (C'C)™'C’G from the first; then subtract the first row
pre-multiplied by C’ from the second. The result is

) _ s L [I-G €
det (f — Dg; ») = det (C'C)™" det [F - 0
_D‘(Ei‘ _DEF B e
- rer-1 -Dt, —3'@—-B% 1-Dt, —#'B 0
= det (C'C)™" det e 0 0 9 (29)
—e’ 0 0 0
Differentiating Walras's law, we can establish that #'D¢; + Df; = —&(f)' = —§'B

and #'D§; + Dt = 1. Consequently, adding the first row of the above matrix pre-
multiplied by 7' to the second and adding the third row pre-multiplied by $ to the
second yields

0 —e' 0
det (¢ — Dgzp) = det (C'Cy' det {DE¢,  —~Df, B{. (30)
G — B! ]

Similarly differentiating (A.2), we can subtract the second column of this matrix
post-multiplied by # from the first multiplied by # to produce

det (I — Dg ) = 1/Pdet (C'C)™" det [:35,* ‘g]. (31)
Notice that this expression is non-vanishing if and only if the Jacobjan matrix in (19)
is non-singular.

A regular economy is defined to be one that satisfies (R.1)-(R.3) and one addi-
tional restriction:

(R.4) I — Dg: ; is non-singular at every equilibrium {f, 7).

THEOREM 2. If(t, t, A, A*) € J is aregular economy, then it has a finite number
of equilibria that vary continuously in the topology we have defined on I

For a proof of a similar theorem see Kehoe (1980).
The appeal of the concept of regularity is enhanced by its genericity in the space
of economies.
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THEOREM 3. Regular economies form an apen dense subset of .

In other words, if an economy is regular, then any sufficiently small perturbation
produces another regular economy, but, if an economy is not regular, then an arbitrarily
small perturbation produces a regular econormy.

The proof of this theorem follows the same lines as that in Kehoe (1980). The idea
of the proof is to demonstrate that we can perturb the system of equations (20) or
alternatively (16)-(18) in a sujtable number of directions. If (R.1) or (R.3) is not
satisfied, then there are more equations than unknowns in the system. If we could
perturb the system in a suitable number of directions, we would not, in general,
expect a solution to exist where these assumptions are violated, If (R.2) or (R.4) is
not satisfied, then there are more unknowns than independent equations. Perturbing
the system would, in general, make these equations independent. Figure 2 depicts an
economy that is not regular and two different perturbations that make it regular.

Demanstrating that almast all functions t satisfy (R.1) and that almast all matrices
A and A* satisfy (R.2) is trivial. Actually, both restrictions are stronger than needed.
(R.1}, for example, can be replaced with the assumption that z(7, ¥) = 0 on some
neighbourhood of (7, #) if (7, F} = 0. To demonstrate that almost all economies
satisfy (R.3) and (R.4), we perturb £ and ¢ using a vector (u, v) that lies in an open
subset of R**' that contains the origin

£ n(m, F) = §(x, 1y + [(#'u —v)iw'e]le — u (32)
r(u,u)(ws P‘} = g("'rar} + . (33)

Itis easy to verify that (£, ), 2, ,;, A, A*} € Tif (¢, ¢, A, A*}is. It can also be proved
that, for any fixed (£, t, 4, A*) that satisfies (R.1) and (R.2), almaost all (i, v) are
such that (£, .y, o 0 A, A*) satisfies (R.3) and (R.4).

THE INDEX THEOREM

We define the index of an equilibrium (%, 7) of a regular economy to be sgn [det
(I = Dg; :)]. Our discussion in the previous section indicates that

index(7, 7} = sgn (det [:gf,’ g]) (34)

Relying on the approach used by Saigal and Simon (1973), we can prove the follow-
ing theorem:

THEOREM 4. If (£, t, A, A*) is a regular economy, then Y index(®, f) = +1
where the sum is over all equilibria.

Noatice that this result implies that there are an odd number of equilibria and, in
particular, that there is at least one equilibrium.

The concepts of regularity and fixed-point index that we have discussed here can
easily be extended to economies with more general smaooth production technologies,
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involving bath constant and decreasing returns. In situations where efficient produc-
tion techniques vary with prices we can compute the index of an equilibrium as

index(#, 7) = sgn (det [_D Eg:f (g(ﬁ} Bg?)]), 35)

Here H{x) is the matrix of partial derivatives of the vector B{m)y with respect to the
vector © where v is held fixed (see Kehoe (1983)).

The most significant consequence of the index theorem is that it permits us to estab-
lish conditions sufficient for uniqueness of equilibrium. If index (&, F) = +1 at
every equilibrinm, then (7, £, A, A*) has a unique equilibrium. Moreover, these condi-
tions are necessary for uniqueness in almost all cases: If (#F, 7) is an equilibrium
where index(z, F) = —1, then (=, £, A, A*) has multiple equilibria.

Kehoe (1982a) studies the question of when an economy with production, but no
distortions, has a unique equilibrium. He discusses two conditions, which corre-
spond to easily interpretable economy assumptions, that imply uniqueness of equi-
Librium. The first is that £ satisfies the weak axiom of revealed preference. An easily
interpretable assumption that implies that this condition holds is that there is a repre-
sentative consumer who generates £. The second condition is that there are always
r — | activities in use at equilibrium. An assumption that implies that this condition
halds is that the economy has an input-output structure: There is one non-produced
gaoad; there are ne initial endowments of produced goods; and positive production of
produced goods is feasible.
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Unfortunately, the distortions present in the model with taxes make even these
assumptions, which are extremely restrictive, too weak to ensure uniqueness. This
point has been made by Foster and Sonnenschein (1970) and Hatta (1977), who
present graphical examples of single-consumer economies and input-output pro-
duction technologies with multiple equilibria. As these authors have pointed out,
such examples depend on inferiority of at least one goed.

Suppose that there are two produced goods and one factor of production, which is
supplied inelastically. The production possibility frontier in the space of the two pro-
duced goeds is a straight line. In a model without taxes the slope of this line would be
the negative of the relative price ratio for the two goods. Using this relative price
ratio and the zero profit condition, we could easily compute the unique equilibrium
prices without regard to demand. In a model with taxes there are two crucial differences.
First, the prices faced by consumers do not necessarily correspond to those given by
the slope of the production possibility frontier. Second, the level of demand is crucial
for determining the level of tax revenue, which is an essential part of the definition of
an equilibrium. Figure 3 depicts a model with three equilibria, each of which has the
same price vector but a different level of revenue.

Using our index theorem, we are able to generalize a condition due to Hatta that
does imply uniqueness of equilibrium in economies with input-output production
technologies with one non-produced good: Let T be the vector of efficiency prices
assaciated with the production matrix Binthe sensethat 7'B = 0. If 7' D& (w, ¢} > O
for any choice of 7 and r, then the economy has a unique equilibrium. In contrast to
this result, which holds for economies with many consumers, Hartta’s condition is
developed for the one consumer maodel and is expressed in terms of that consumer’s
compensated demand function.

To see why this condition warks, we partition {34) into

—dy ~d b,
index (%, 7} = sign | det| —d,, -0y B, . (36)
,_.bL*f _.Bl*’ 4]

Hered, is1 X 1,dpisl X (n — 1), dy is(rn — 1} X 1,Dyis(n — 1} X (n — 1),
and so an. We have numbered goods so that the first is the non-produced factor of
production. For production to be feasible, B, must be a productive Leontief matrix.
Since B* g Bbut [, ... 7,] By* = —% %' 2 0 for some 7 € §, B,* must also
be a productive Leontief matrix. Performing elementary row and column opera-
tions, and using (A.2) to establish that D& & + DE;F = 0, we can obtain

7'DE, 0 0
index (#, #) = sgn | (/7 =) det 0 0 B,
0 —B,*! 0
= sgn {w'DE, det (B,*) det (B,})
= sgn (7'D§,) (37

since det (B,*) > 0and det (B,} > Q.
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SUBSIDIES

The model analysed in the previous sections has very limited scope for analysing
subsidies. We have imposed conditions on ¢(x, r) and A* that ensure that # = 0 at
every equilibrium. If this is not the case, then the government may find it impossible
te balance its budget. This can cause serious problems in existence proofs (see Shafer
and Sonnenschein, 1976). In this section we extend our analysis to a model that allows
a wide variety of subsidy schemes.

We allow the same sorts of subsidies as we do taxes: ad valorem and specific
subsidies on production and consumption and linear and non-linear subsidies on income.
We need to be able to guarantee, however, that the government can pay these subsi-
dies out of its tax revenues. To do this, we introduce another variable, s, that is equal
te the fraction of the subsidy payments the government can afford to make: If s = 1,
the government has enough tax revenues to make all the subsidy payments. Ifs = 0,
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the government cannot afford to make any subsidy payments. Define £(x, r, 5) as the
aggregate excess demand function and ¢(w, r, ) as the tax payments by consumers
net of subsidies to consumers. Both £ and ¢ are assumed to be C'. For fixed s,
0 < s € 1, £ isassumed to satisfy assumptions (A.2)-(A.4), and ¢ is assumed to satisfy
(A.6). £ and £ are assumed to satisfy (A.7), Walras's law. We assume that ¢(7, , 0} > 0
for every (z, r) € (R," N[0} X R,.

To clarify the role of s, let us modify our example of an economy with taxes to
allow subsidies: The problem that faces the consumer becomes

max w,(x¢, ... , X}

]

st 2wl + 7, — sa x> (1~ ) 2umw! + sq(a)n; + 6r. (38)
i=1

i=1

Here 1 > ¢, 2 Ois the ad valorem subsidy rate on the final demand for commedity i
by consumer f, %, 2 0 s a fixed income transfer, and g{rr) is some homogeneous of
degree one price index.

To model subsidies to producers we construct a matrix A¥* by setting ¢, ** =
oyla,l where now a,; 2 0 is the ad valorem subsidy rate on the cutput of input of
commodity i in activity j. We assume that there are no subsidies on free disposal
activities.

The concept of equilibrium is modified to be a vector (%, 7, §} that satisfies the
following conditions:

(E.1) ©'(A* + §A**) £ 0.

(B.2) £(#, 7, §) = Ay for some § 2 0.

(BE.3) # = 1(, #,5) + #'(A — A% — §A*¥%)).

(E4) 7' = 1.

(E.5) If§ < 1, then? = Q,and if # > 0, then § = 1.

Conditions (E.1)~(E.4) require no comment, since they are analogous to the condi-
tions of the previous definition. Condition (E.5) says that the first commitment of the
gavernment tax receipts is to subsidies, and only after making all the subsidy pay-
ments can it transfer revenue to consumers. Furthermore, {E.3} and (E.5) together
imply that, if § = 0, then ¢(&, #, 0) + ©'(4d — A*)j = 0.

To prave the existence of equilibrium for this model we define a continuous
mapping of § X [0, 8] x [0, 1] into itself, whose fixed points are equivalent to
the equilibria of (£, ¢, A, A%, A**). For any (7, r, s) we define g(x, r, s} to be the
vector (p, ¢, u) that solves the problem

min %[(p — 7 — L=z, r, 8))(p — 7« — E(7, r, 5})
(g —Hm, 7, 8))2 + (u—~s5—t(x 1 s))]
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stpAd—(l+qg—r+u—s)n'(Ad—- A% — A*¥)
— {1 +u—s¥l —)x'A** < 0

[y

(39)

e =

p!
0
0

L
FAN A

B
1.

F/AN A

The Kuhn-Tucker conditions that characterize the unique solution to this problem are
analogous to (8)}-(12):

p—7T—Em s}t Ay +he=0 (40)
g —tlm, r,§) ~ 7T {A—A¥ ~A¥*)y —p+py =0 41)

pA-(0+g—r+u—17T'A—- A% — A%
— (1l —u—5){1 - )r’A*¥*yy = 0 42)

ug = 0 (43)
B — q) = 0. (44)

In addition, there is a condition associated with the new variable s:
w—5 —tlm, r,8) — (A — A% — sA¥*)y — ¢ + p = 0. (43)
Here ¢ and  are non-negative scalars such that

du =0 (46)
Y —u) =0. 47)

The proof that a vector (Z, F, §) is an equilibrium of (£, ¢, A, A*, A**) is analo-
gous to the proof of theorem 1: since (%, 7, §) satisfies the constraints of (39}, the
conditions (E.1} and (E.4} are satisfied. Suppose for.the moment that ¢ = ¢ = (.

Pre-multiplying (40) by # ' produces
— FER, P 5+ AP+ A = 0. (48)

There are two cases to be considered. First, suppose that # > 0. Then i = 0. Using
Walras’s law, (41), (42), and (48), we can argue, as in the proof of theorem 1, that
A = 0. Consequently, (40) becomes (E.2) and (41) becomes (E.3). Second, suppose
that # = 0. Then t(7, 7, §) + T'(A — A* — A**)§ < 0. This implies that ¢ = 0.
Now we can use Walras’s law, (42), (45), and (48) to establish that A = 0. In either
case ¢ = 7, and (47) becomes (E.5). We can again rule out the possibility thatz > 0
at a fixed point by arguing that this would imply that — (7, 3, §) + A9 > G at
such a point, which would contradict our choice of 8. The assumption that ¢(%, 7,
0) > 0 precludes the possibility that # > 0 at a fixed point.
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The next step of the analysis is to define the concept of a regular economy and to
analyse its properties. We modify (R.1) to require that t{w, r, 0) > O for any (=,
rye 8§ x [0, 8]. It is too much to assume that no column of A* + sA** can be
expressed as a linear combination of fewer than » other columns for any s € {0, 1].
Instead, we assume that this condition holds at any equilibrium, and we add this
condition to (R.2). (R.3) remains the same. (R.4) becomes the requirement that
I — Dgu : 5 is non-singular at every equilibrium (7, 7, §). A regular economy is
defined as one that satisfies {R.1} and (R.4) and a new restriction.

(RI)If§=1,then? > 0.

This rules out the case where § = 1 and # = 0. As before, a regular economy has a
finite number of equilibria that vary continuously with its parameters. Also, as before,
almost all economies are regular,

(R.5} says that in some neighbourhood of an equilibrium either = lorg = 0in
the calculations of (p, ¢, u) in {39). In the case where 4 = 1 we can use the equations

p—7®—Em r,sy+tBy+e=20 (49
g —iw, r,s) — o' B - B¥)y =20 {50)
pB—-(l+qg—-r=x'(B—B*)=0 {51}
pe=1 (52}
u=1 (53)

and the implicit functien theorem to compute Dg. . ;. The formula for the index
remains the same:

index (, 7, §) = sgn (dct [:’gff g ‘g]). (54)
In the case where § = O we can replace (50) with

g=0 (55)
and (53} with

u—s—=t(mr sy — wd— A% — sA*¥)y = 0. (56)

The formula for the index is again the same. In both cases the derivation is virtually
identical to steps (25)-(31).

CONCLUDING REMARKS

Assumptions that imply local unigueness and continuity of equilibria are not at all
restrictive; they are satisfied by almost all economies. Unfortunately, global unique-
ness of equilibrium is much more elusive. Not even the representative consumer and
input-cutput assumptions are enough to ensure it.
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It would seem necessary, therefore, to develop a comparative statics methodology
that does not depend on uniqueness of equilibrium. Hatta (1977} attempts to do some-
thing of this sort, utilizing a Marshallian cancept of local stabjlity. His analysis,
however, pertains to economies with a representative consumer and an input-output
structure. In such a maodel it can be shown that equilibria with index +1 are locally
stable, while those with index —1 are unstable. Unfortunately, although his apalysis
can be generalized to include mare than one consumer, it does not seem possible to
extend it to more general production technologies.

An alternative is to perform comparative statics only in some neighbourhood of a
regular economy. Although this approach may be defensible, a warning should be
given with regard to the continuity of equilibria at regular economies. Although almost
all economies are regular, discrete changes in parameters may necessarily pass through
critical economies where mathematical catastrophes occur. It does not seem that any
sort of comparative statics methodology is applicable in such circumstances.
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