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Uniqueness and Stability

TIMOTHY J. KEHOE

1 Introduction

Consider an economist working with an applied general equilibrium
model. This economist starts by calibrating, or statistically fitting, the para-
meters of the model so that it has an equilibrium that replicates transac-
tions observed in the data. He or she then changes some of the parameters
to simulate a change in policy, and computes an equilibrium to the per-
turbed model. The economist then uses the changes in the values of vari-
ables from the initial equilibrium to the new one as an indication of the
changes that he or she would expect to see in the corresponding variables
in the economy if the simulated policy change were to occur, This is the
comparative statics method. If there is more than one possible equilibrium
after the parameter change, the method becomes problematic.

Since the time of Wald (1936) economists have searched for conditions
that ensure uniqueness of equilibrium in general equilibrium models.
Arrow and Hahn (1971: ch. 9), Kehoe (1985b, 1991), and Mas-Colell
(1991) provide surveys of the results obtained. This chapter presents an
overview of different approaches, summarizes general results, and pro-
vides examples of economies with multiple equilibria. Conditions that
guarantee uniqueness of equilibrium are those that rule out the features of
these cxamples that allow multiple cquilibrium. We begin by considering
exchange economies, and then successfully generalize the analysis to allow
for production and distortionary taxes. The focus here is on economies
with a finite number of goods. The cunclusion briefly indicates how the
analysis can be extended to economies with an infinite number of goods, -
an essential step for studying economies with time and uncertainty.

As we shall see, useful conditions that guarantee the uniqueness of equi-
librium are very restrictive. In this chapter we consider a general set of




UNIQUENESS AND STABILITY K

mathematical conditions that are sufficient and, in general, necessary for
uniqueness. The problem is that in translating these mathematical condi-
tions into easy-to-check and interpretable economic conditions, they lose
their necessity. It may be the case that most applied models have unique
equilibria. Unfortunately, however, these models seldom satisfy analytical
conditions that are known to guarantee uniqueness, and are often too
large and complex to allow exhaustive searches to numerically verify
uniqueness. More research is obviously needed.

2 Exchange Economies

Consider a model economy with m consumers who trade their endow-
ments of # goods among themselves. Each consumer is specificd by a util-
ity function u(x,, ..., X,) that is defined on a consumption set that is the
nonnegative orthant of R", denoted R, and an endowment vector
w'= (W, ..., wj) that is strictly positive, w* € R},. An equilibrium is a
price vector p and an allocation (£, ..., £7), where ' = (#, ..., %), such
that

¢ given p, each £’ solves
maximize u{x)
subjecttop-x =

X =

pow
0;

m i m i
LID YR o U

(In the consumer’s budget constraint, p - x is, of course, the inner produci
21D %) o o

In the case where m = n =2 the equilibrium can be depicted in an
Edgeworth box. Unfortunately, even in this simple case there can be mul-
tiple equilibria, as the following example demonstrates.

2.1 EXAMPLE 1

Consumer i, i = 1, 2, has the utility function
u{x, Xo) = @(x — 1)ib, + a(xf — 1)/b,

where g >0 and b, < 1. This is the familiar constant elasticity of substitu-
tion (C.E.S.) utility function with elasticity of substitution m; = 1/(1 = by);
in the limit where b, = 0, I'Hopital’s rule says that the utility function is
d log x, + @, log x,. Suppose that b, = b, = —4, so that 1, = 1, = 0.2, and
that the two consumers have the symmietric parameters a; = a5 = 1024,
al = @ = 1,w} = w} = 60, and wi = w; = 3.
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Figure 3.1 Nonuniqueness example in an Edgeworth box

This economy has three equilibria, which are depicted in the Edgeworth
box in figure 3.1 and whose corresponding prices and allocations are listed
below (The utility indices reported are 100,000 (x; — 1025/4); in other
words, the constant terms —ajb; have been eliminated and the numbers
scaled up.)

Equilibrium 1
2 % U;
43.1565 7.1442 -16.9770

21.8435 57.8558 —2.3946
0.1273 1.0
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Equilibrium 2

% % ;
£ 52.0 13.0 —4.3766
£ 13.0 52.0 —4.3766
b; 1.0 1.0
Eqguilibrium 3

by 57.8558 21.8435  —2.3946
£ 7.1442 431565 —16.9770
P; 7.8555 1.0

Notice that if all prices are multiplied by the same positive constant, the
consumer’s budget set does not change, and the price vector remains an
equilibrium. Since we do not want to think of this indeterminacy of the
absolute price level as multiplicity of equilibria, we need to somehow nor-
malize prices. We have done so here by making the second good the
numeraire and setting p, = 1.

2.2 EXCESS DEMAND FUNCTIONS

The usual approach to analyzing the possibility of multiplicity of equilibria
is to use the economy’s aggregate excess demand function. We solve the
maximization problem of consumer i to derive the demand function
x(p) = ((p), ..., x(p)). Our assumptions on ux) and w' imply that
x'(p) is continuous, at least for strictly positive price vectors; that it is
homogeneous of degree zero, x'(8p) = x'(p) for all 8 > 0 and all price vec-
tors p; and that it satisfies the budget identity p' - x'(p) = p - w'. The aggre-
gate excess demand function

fp) = itx*(m ~ Wi,

therefore, is continuous, at least for all p € R}, is homogeneous of degree
zero, and obeys Walras’s law,

p-flp)=0.
An equilibrium is now specified as a price vector p for which
e f(P)Y=0,j=1,...,n
(Walras’s law implies that f(p) = 0 if p; >0, but we allow for free goods.)

Obviously, p, x'(5), . . . , x"(p) is the corresponding equilibrium in the pre-
vious specification.
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Unfortunately, utility maximization does not imply that f is continuous
on the set of all nonnegative prices except p = 0, denoted R:\0). Excess
demand may become unbounded from above on some sequence p* — p°
where p* € R}, and p° € R1\{0}, p! = 0 for some i. One approach to han-
dling this minor technical problem is to bound the consumers’ budget sets
with a constraint like x' = 2 3" ,w/ (see Debreu 1959: ch. 5). With such a
constraint x'(p), and therefore f( p), is continuous on all R}\[0}. Moreover,
the constraint x =< 232 ,w/ cannot bind in any equilibrium, since we know
that 37.%° = X7 ,w' and £ = 0. Alternatively, we could modify the aggre-
gate excess demand function f{p) itself so that it is continuous on all
R0}, but is unaffected on a large open subset of prices that includes any
possible equilibrium (see Kehoe 1982). In any case, the potential
unboundedness of excess demand as some prices tend to zero plays little
substantive role in the matters discussed here.

The excess demand function allows us to reduce our search for equilib-
ria to a search for price vectors that satisfy {p) < 0 and f,(p) = 0 if p;>0.
Homogeneity allows us to normalize prices. Rather than choosing a
numeraire by setting, say, p, = 1, we normalize 3%, p; = 1. This has the
advantages of restricting prices to a compact set and of allowing any good
to potentially be a free good. Walras’s law allows us to neglect one of the
conditions f(p) = 0 unless p; = 0. In general, therefore, we look for price
vectors p that satisfy 37, p;=1,p,= Cand fi(p) =0,/ =1,...,n — 1, with
f{p) = 0if p,> 0.

2.3 EXAMPLE 1 (CONTINUED)
The demand function for good j by consumer { with C.E.S. utility is

(3;)“‘(191“’{ + powi)
py((@)pi™ + (a)"p3™™)

x)"‘(pl’PZ) = sivj= 1! 2.

(Once again, n; = 1/(1 — b,) is the elasticity of substitution.) For the para-
meters of our example,

4(60p, + 5p,) + (5p, + 60p;)
pP(Apt + p2Y) - p3(p)® + 4p2¥)

filpupo) = 65.

The equation f,(p,, 1 — p;) = 0 has three solutions: p, = 0.1129, Wh@ch @s
equilibrium 1; p, = 0.5, which is equilibrium 2; and £, = 0.8871, which is
equilibrium 3. Figure 3.2 depicts the graph of the function f(p,, 1 — py).
An equilibrium is either a zero of this function, or p, = 0if (0, 1) =0, or
py = 1if fi(1, 0) = 0 and where we need to check that £,(1, 0) = 0. ‘
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0.8871

_1 e
Figure 3.2 Nonuniqueness example in an excess demand diagram

2.4 GROSS SUBSTITUTABILITY

Two assumptions have played significant roles in discussions of uniqueness
of equilibrium since the time of Wald (1936): gross substitutability and the
weak axiom of revealed preference. We consider each of these two
assumptions in turn, and explain how they are violated in our example of
multiple equilibria. .

Gross substitutability says that, if p = q and p, = g, for some i, then
f{p) = f(q) and, if f(p) = f(g), then p = q. (This condition actually com-
bines two conditions oftcn known as “weak gross substitutability” and
“indecomposability”.) If f{p) is continuously differentiable, then
3f(p)dp,>0 for i#j is sufficient for gross substitutability, and
9f,(p)/dp; = 0 is necessary. The argument that gross substitutability implies
uniqueness is straightforward. Suppose that an excess demand function
satisfies gross substitutability, but that there are two vectors p and g, such
that f{p) < 0 and flg) = 0. Then it must be the case that p and g are both
strictly positive and that f(p) = f(g) = 0; otherwise, for example, p; = 0,
2p = p, and f(2p) = f( p) would imply 2p = p. If we set § = max [g/py, - ..,
g,/p.], then @ satisfies 6p=gq, 6p;=gq; for some i Consequently,

Ll
Hif
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f(ép) = f(p) = flg) = 0 and gross substitutability imply that 6p = g and
that p and g are not distinct equilibria.

Our example of nonuniqueness violates gross substitutability because at
p = (0.5, 0.5), for example, the Jacobian matrix of f{ p) is

o~ _[ 128 -—1.28
bfip) = [-—1.28 1.28]’
and df;(p)/op, < 0. It is easy to check that a sufficient condition for gross
substitutability in economies where consumers have C.E.S. utility is that

€very consumer’s curvature parameter satisfies b; = 0; in other words, that
every elasticity of substitution satisfies n; = 1.

2.5 THE WEAK AXIOM

The weak axiom of revealed preference says that, if p-fig) =0 and
fip) # Rq), then g - f( p) > 0. This condition implies that the set of equilib-
ria is convex. Suppose that there are two vectors p and g such that
flp) =0 and flqg) = 0. Observe first that f(p) = f(q); otherwise p - flg) =<0
and f(p) # f{q) would imply g - f(p) >0, which would contradict f(p) =0
and g = 0. Let

p@®) =0p+(1-0)g0=0=<1

Then p(8) - A p) =0, and p(8) - f(g) = 0. Furthermore, Walras’s law says
that (8p + (1 — 8)g) - A p(8)) = 0. Consequently, it cannot be the case that
p - A p(8)) > 0; otherwise g - f{ p(6)}) <0, which would contradict the weak
axiom. We therefore conclude that p - f(p(8)) =0, which implies that
- f(p(8)) = f(p). Therefore, unless the graph of fi(p,, 1 — p,) were to
become tangent to the axis in figure 3.2, there is a unique equilibrium.

Wald (1936) actually employed a condition slightly stronger than the
weak axiom: if p- f{g) = 0 and p # 6q, then g - f{p) > 0. This condition
implies uniqueness directly. The attractive feature of our weaker condition
is that it is satisfied by any excess demand function derived from the maxi-
mum of a strictly concave utility function by a single consumer. (The term
“axiom of revealed preference” was proposed by Samuelson (1938, 1948)
as the basis for a characterization of individual demand functions that is an
alternative to utility maxnmlzatlon) That p - (x(q) — w') = 0 means that
u{x(p)) = ufx(q)) because x'(q) is affordable at prices p. Similarly,
g-((p)—w)=0 means that w(x(q))=u(x'(p)). Therefore
x(p) = x(q), because otherwise the strict concavity of utility would imply
that

u{8x(p) + (1 — O)xi(g)) > u(x(p)),0< <1,

and, since p - (8x'(p) + (1 — 8)x'(q) — w') = 0, this would contradict x( p)
being utility-maximizing.
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In our example, although both the individual excess demand functions
(x'(p) — w') and (x*( p) — w?) satisfy the weak axiom of revealed prefer-
ence, their sum, f{p), obviously does not: otherwise there could not be
three isolated equilibria, i) = 0. It is this lack of aggregatability that
makes the weak axiom an unattractive condition compared to gross substi-
tutability. If two excess demand functions satisfy gross substitutability,
then so does their sum. By contrast, if two excess demand functions satisfy
the weak axiom, then their sum may not, as our example demonstrates.

In fact, a series of results due to Sonnenschein (1973), Mantel (1974),
and Debreu (1974) indicate that without fairly strong restrictions, the
aggregate excess demand function is arbitrary: specifically, for any excess
demand function for » goods that is homogeneous of degree zero and
obeys Walras’s law, and for any compact set of prices on which this func-
tion is continuous, there is an economy of n consumers who, in maximizing
utility subject to their budget constraints, generate this aggregate excess
demand function. Shafer and Sonnenschein (1982) provide a survey of
these, and related, results.

There are two notable cases where we know that the sum of individual
excess demand functions satisfies the weak axiom: first, where utility func-
tions are homothetic and identical, but where endowment vectors are arbi-
trary, and, second, where utility functions are homothetic but possibly
different, and endowment vectors are proportional to each other. In each
of these cases, in fact, the aggregate excess demand function has all the
properties of an individual excess demand function, in that it satisfies the
strong axiom of revealed preference, which implies that there exists a util-
ity function and endowment vector such that the excess demand function
solves the consumer’s maximization problem. (The strong axiom says that

for any finite set of price vectors, p', p% ..., p¥ the conditions
pPfiph=0, pP-ApH=0, ..., p'-f(p)=0 cannot hoid unless
Ap'y=Ap?) = ... =f(p*); the weak axiom is this condition only for

pairs of such price vectors; see Houthakker 1950 and Richter 1966.)

The case of identical homothetic utility functions was considered by
Antonelli (1886), Gorman (1953), and Nataf (1953). It is easy to show that
the excess demand function in this case can be derived by solving

max u(x)
stp-Xx=> p-w !
i=1 ’
x=0
and setting f(p) = (x(p) — Zw'). Here, of course, u(x) is the common
utility function. The aggregate excess demand function f(p) obviously sat-
isfies the weak axiom (and the strong axiom) because it is the individual

demand function of the consumer with utility function u(x) and endow-
ment vector 37, w'. We can disaggregate consumption decisions by setting
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#(p) - (p W3 p-w)e(p).

The case of different homothetic utility functions but proportional
endowments was considered by Eisenberg (1961) and Chipman (1974). In
this case, the distribution of income is independent of prices, since
p-wi¥ip-w =6, where 8, is the proportionality factor such that
w' = §,21,w. It is easy to show that (x!(p), ..., x"(p)) solves

max Z 0; log u,(x)
i=1

s.t.Zp-xf::ip-w‘
=1

i=1

¥ =0

Here u; is the homogeneous-of-degree-one representation of the utility
function of consumer i. To see that the excess demand function of such a
group of consumers satisfies the weak axiom of revealed preference, sup-.
pose, to the contrary, that p'- f{p?) =0, p?- f(p") =0, and A(p!) # A p?
for some p!, p* € R™N0}. Then ‘

PR = 2 ) - S w0

i=1

in other words, (x'(p?), ..., x™(p?) is affordable at prices p’, and
fph) = Z] (x'(p") — w') # Zl (x'(p*) = w) = flp’);

in other words, (x!(p?), ..., x™(p?)) is not the solution to the maximization
problem at prices p'. Consequently,

Zl 8; log ufx'(p")) > ; 8, log u(x'(p")),

since the strict concavity of the objective function implies that there is a
unique solution to the maximization problem. Reversing the roles of p!
and p?, we can reverse this inequality and generate a contradiction, estab-
lishing that f{ p) does indeed satisfy the weak axiom. In fact, this logic can
be extended to show that f(p) satisfies the strong axiom and can be
derived from utility maximization by a single consumer, although it may
be difficult to derive this consumer’s utility function and endowment.
These two sets of restrictions that imply the weak axiom are unattractive,
because they both rely on homothetic utility functions. Following the lead of
Hildenbrand (1983), economists have searched for more general restrictions
on preferences and endowments that imply the weak axiom for aggregate
excess demand. These sorts of restrictions are especially important in the
context of economies with production; we shall return to this issue later.
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Hlp, L—=p1)

Figure 3.3 Degeneracy of an economy with a continuum of equilibria

3 Regularity and the Index Theorem

The weak axiom of revealed preference implies not that the equilibrium
price vector of an exchange economy is unique, but that it is an element of
a convex set of equilibria. Intuitively, however, we view situations like that
depicted in figure 3.3, where there is a continuum of equilibria, as degener-
ate: a small perturbation in f{p) ~ or in the underlying characteristics of
the economy, u,(x) and w' - should eliminate the continuum of equilibria.

3.1 REGULAR ECONOMIES

Debreu (1970) formalizes this intuitive notion of using small perturbations
to rule out degenerate situations like that in figure 3.3 with his concept of a
regular economy. A regular equilibrium is a price, vector p such that
A(p) = 0 and the (n — 1) X (n — 1) matrix formed by deleting the last row
and column from the Jacobian matrix Df(5) is nonsingular. A regular eco-
nomy is one for which every equilibrium is a regular equilibrium. Regular
economies are attractive for four reasons. First, a regular economy has a
finite number of equilibria. (A regular economy that satisfies the weak
axiom therefore has a unique equilibrium.) Second, each equilibrium
of a regular economy varies continuously with the underlying characteris-
tics of the economy. Third, in the set of all possible economies given an
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appropriate topological structure, almost all economies are regular.
Fourth, we can use a fixed point index theorem to develop necessary and
sufficient conditions for uniqueness of equilibria of regular economies.

To understand the first property of a regular economy, that it has a finite
number of equilibria, consider an economy in which strict monotonicity of
utility rules out free goods in equilibrium. We can write out the equilib-
rium conditions as

i=1

ﬁ(*""""?"“b(l —Ep;)) =0

n-1

f;z—l( P Domts (1 - }Z p,-)) = 0.

j=1

As a solution p, the (n — 1) X (n — 1) Jacobian matrix of the functions on
the left-hand side of these equations is

afi . ofi oh .. O .
%, (7) P, (5) Fr (p) o, (p)
oy, . Ofr a1 o
", (») . (p) . (p) o, (p)_
The determinant of this matrix is equal to
o, of, 3, ¥, ]
LAY ) 3 5) — 4 0
P (9) %, (#) P (9) . (#)
det o
Of1 Ofu1 ' of,1 Sf1
5) ~ 5 () - T(p) 0
o (%) 3, (#) P (8) o (P)
| 1 1 1 J

We can multiply the final row of the above matrix by 8f(5)/dp.. and add it
toeachrowi=1,...,n — 1, without changing its determinaflt,

of
3, (8)

det

et
o (p)

1

o

—3pn-1 (#)

afn—l "
P
apn—] ( )

1

of
%, (p)
afn—‘l
ap,
1

(#)
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The }xon?ogeneity of f(p) implies that 3_, 5 9f{(p)/ap; = 0. Consequently,
multiplying each column of the above matrix by p; and adding to the final
column multiplied by p., we obtain

* o,
3, # .. P (#) 0
/p,) det : : ,
At . of. s
e ves B — 0
», (B) P (¥)
L1 . 1 1
which has the same sign as the determinant of
dfi ofi
. w .. P (7)
J= oo :

o1 et

apl (ﬁ) L apﬂ—l (p)

A regular equilibrium is one where this matrix is nonsingular. (A similar
argument shows that J is nonsingular if and only if the (n — 1) X (r — 1)
matrix formed by deleting any row and any column [rom Df{p) is nonsin-
gular.)

If p is a regular equilibrium, then the inverse function theorem implies
that there is some open neighborhood of (p,, ..., p,-,) in R%;! such that
the n — 1 functions that we have set to 0 to produce the equilibrium can be
inverted, and that (9, ..., B,-) = f(0). A regular equilibrium p is,
therefore, locally unique, in that there is a relatively open subset of the
unit simplex

n
S=[pER"Iij=1,pj=_'0}
=

that contains p and no other equilibrium.

To see that this implies that a regular economy has a finite number of
equilibria, suppose instead that there is an infinite number, p', ...
Since the set S is compact, this sequence has a convergent subsequence,
which converges to, say, p*. We know that f{ p) is continuous, that the sub-
sequence of price vectors p* converges to p* and that f(p*)=0.
Consequently, f{ p*) = 0. Since the subsequence of price vectors p* con-
verges to p*, however, every open set that contains p* must contain an
infinite number of other equilibria. Therefore, p* is not a regular equilib-
rium, and the economy cannot be regular if it has an infinite number of
equilibria.

To understand the second property of a regular economy, that its equi-
libria vary continuously with its underlying characteristics, suppose that we
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parameterize the excess demand function with a finite number of parame-
tersb = (by,..., b,). We write

n—1
fl(Pl:--me (1_ PJ);b) =0

fn~1(pls LR !prp (1 - P}); b) = 0.

The implicit function theorem says that if f( p, b) is continuously differen-
tiable in the price variables and the parameters, and if the
(n — 1) X (n — 1) Jacobian matrix of partial derivatives with respect to the
price variables is nonsingular ~ that is, if p is a regular equilibrium ~ then
in some neighborhood of a solution (3, %) = 0 there is a function p(b)
such that p(b°) = p, and

fp(b). b) = 0.

Dierker (1982) explains how these results can be extended to situations
where the space of parameters is not finite-dimensional and where f{p, b)
is not necessarily continuously differentiable in the parameters.

The third property of regular economies is that they represent what is,
in some sense, the generic situation. The most restrictive condition that a
regular economy needs to satisfy is that its excess demand function be con-
tinuously differentiable. Debreu (1972) and Mas-Colell (1974) have
argued, however, that arbitrarily small perturbations to the characteristics
of an economy whose excess demand function is not continuously differen-
tiable can make it continuously differentiable, at least if we rule out corner
solutions to the consumers’ maximization problem. Furthermore, Debreu
(1970) has shown that if we fix the utility functions of all consumers and
the endowments of all but one of the consumers in an economy where
excess demand is continuously differentiable, then, for an open set of full
Lebesgue measure of endowments of the remaining consumer, the corre-
sponding economy is regular. Dierker (1982) and Mas-Colell (1985: ch. 8)
survey generalizations of this result that allow all of the characteristics of
the economy to vary. The most general results say that, in a topological
space of utility functions and endowments that satisfy conditions for gen-
erating continuously differentiable excess demand, regular economies are
open and dense. Furthermore, on suitably chosen finite-dimensional sub-
spaces of paramctcrs, rcgular cconomics satisfy these properties and the
additional one of having full Lebesgue measure. That regular economies
are open means that any small enough perturbation to a regular economy
yields another regular economy. That regular economies are dense means
that if an economy is not regular, then an arbitrarily small perturbation
will make it regular. That regular economies have full Lebesgue measure
means that if we choose the parameters of an economy from a large

ki)
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enough finite-dimensional set — say, the parameters a,-‘, b, and w} in exam-
pie 1 - at random, then with probability 1 the resulting economy will be
regular.

It is possible to argue that, among economies that satisfy conditions like
gross substitutability and the weak axiom, regular economies are also
generic. The crucial step is to show that in the topology on the space of
economies the subset that satisfies one of these conditions is big enough —
the closure of an open set. If so, then the intersection of the subset of
economies that satisfy the condition with the subset of economies that are
regular consists of almost all economies that satisfy the condition.

Mas-Colell (1985: ch. 8) shows how these regularity results can be
extended to economies where consumer’s utility maximization has corner
solutions: although the excess demand function may not be continuously
dii‘erentiable, price vectors where continuous differentiability fails are
almost never equilibria. Similarly, Kehoe (1980, 1982) shows how these
regularity results can be extended to economies with free goods. Allowing
for free goods is thought of most easily as allowing for production - in this
case, disposal of the free good. We therefore postpone discussion of free
goods until we have discussed production economies.

3.2 THE INDEX THEOREM

‘The fourth property of regular economies is that we can use an index theo-
rem to develop necessary and sufficient conditions for uniqueness of their

equilibria. To understand this property, it will help to recall how
Brouwer’s fixed point theorem can be used to demonstrate the existence

of equilibrium.

We need to find a function g(p) defined on § such that g(p) € S and that
p = g(p) if and only if f(p) = 0. The existence of equilibrium then follows
from Brouwer’s fixed point theorem.

Figure 3.4 depicts a version of this theorem for the'case where n = 2.
Notice in this figure that we can say something more: if there is no fixed
point at p, = 0 or p, = 1 and the graph of g(p;, 1 — p;) never becomes
tangent to the diagonal, then the graph of gi{p1, 1 — p;) must always cross
the diagonal one more time from above than it does from below. Suppose
we define

agl ) ( agl 4 )]
i 7Y = — | Hn 1— Al = 13 1- 1 5
index(g) sgn[l ( 37, (p 2y + o, (p )

B %
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filpu 1-p)

+1

+1

Figure 3.4 The index theorem whenn =2

that is, index(p) = -+1 at a crossing from above, and index(p) = —1 at a
crossing from below. Then '

> index(p) = +1.
r=g(p)

This example is a special case of a more general index theorem originally
introduced into economics by Dierker (1972) (see Mas-Colell 1985: ch. 1
for references).
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The most obvious way to calculate the index of a fixed point is to locally

extend g(p) to a function from R" to S and to calculate ordinary partial
derivatives. Notice that in the case where n = 2, the formula in our exam-
ple agrees with that in the theorem:

o - -

og . ag 98, ag
1 — — — —— o) 1 — —— | — a
5@ "5 ® "
det = det
98, dg,
- =) 1-—=(F 1 1
() - (7)

9g, 9,
=1__._._ 3y 4 —— "_
pl(p)— apz(.v)

The first equality follows from differentiating g,(p,, p2) + g(p1, p2) =1

with respect to p, to show that dg,(p)Yap, + dg.(p)/dp, = 0, then adding
the first row of the matrix to the second.

The index theorem provides a sufficient condition for uniqueness of a
fixed point:

det[l — Dg(p)l >0
at every fixed point. It also provides a necessary condition: if
det[l — Dg(p)] <0

at a fixed point, then there are necessarily multiple fixed points.

3.3 UNIQUENESS OF EQUILIBRIUM

To make economic sense of the index theorem, and to see that the condi-
tion that {I — Dg(p)] be nonsingular at every fixed point is, in fact, the
condition that the economy is regular, we need to differentiate a function
g(p) whose fixed points are equilibria. Suppose, for example, that we let
g(p) be the point in § that is closest in terms of Euclidean distance to
p + f{p); in other words, g(p) is the vector g € R" that solves

min (1/2)Z(g, —p;— f(PY
s.t. ig,- =1

=1

gi?_().

e A M

T e
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It is easy to show that p = g(p) if and only if f{p) = 0, and that
sgn(det[ — Dg(p)]) = sgn(dex[—7])

if p is strictly positive (see Kehoe 1980, 1991). (Here, as before, J is the
(n — 1) X (n — 1) matrix formed by deleting the last row and column from
Df(p).) We merely differentiate

() =i+ 1(p) + ) (1= S e+ £ilo)

and perform elementary row and column operations on [ — Dg(p)] that
do not change the sign of its determinant.

Restricting our attention to economies with continuously differentiable
excess demand functions, we see that

det[—J] >0

at every equilibrium is sufficient for uniqueness, and is necessary if the
economy is regular. Consequently, any conditions that imply uniqueness,
such as gross substitutability and the weak axiom, must imply that det[—T]
is nonnegative and, in general, positive.

Gross substitutability, for example, implies that the diagonal elements
of —F are nonnegative, and the off-diagonal elements are nonpositive.
Since the homogeneity of f{p) implies that 2§ 2fi(p)op; = 0, we know
that, unless some row of —J is all zero and p is not a regular equilibrium,
the diagonal elements of —J are actually positive. Furthermore, since

¥ R e
3, @ .- . (5) P vy (P)
) Ot . O,

L apl (p) LA apn_l(p)— Lxorl"l | —pn afn (p)-

and the vector on the right-hand side has all elements nonnegative and not
all zero (unless p is not a regular equilibrium), we know that —7 is, in fact,
a P matrix, a matrix with all of its principal minors — and hence its determi-
nant — positive (see Metzler 1945, Hahn 1958, and McKenzie 1960).

Similarly, the weak axiom of revealed preference implies that det[—J] is
nonnegative and, in general, positive. Kihistrom, Mas-Colell, and
Sonnenschein (1976) prove that a necessary condition for the weak axiom
is that

v Df(pv £0

for all v € R" such that v - f{(p) = 0, and that a sufficient condition is that
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the inequality be strict for all v not proportional to p. In the case where
f(p) = 0, this requires that Df($) be negative semi-definite, which implies
that —J is positive semi-definite, and that det[~7] 2 0.

3.4 EXAMPLE 1 (CONTINUED)

Our example with multiple equilibria is a regular economy, since, in this
case, the (n ~ 1) X (n — 1) matrix J is just the number af,($)/dp, which is
nonzero at every equilibrium: ‘

9
— (0.1129, 0.8871) = —15.6225.
ap,

ofy
=L (0.5000, 0.5000) = 1.2800. _
ap,

ofi
L (0.8871,0.1120) = —0.3652.
ap,

Notice that, since index(p) = sgn(—9f,(p)/op,), equilibria 1 and 3 have
index +1 while equilibrium 2 has index —1. In fact, this example has been
constructed by choosing the symmetric parameters @, b, and wi so that at
the symmetric equilibrium where p, = p, the index is —1. The index theo-
rem then tells us that the economy has multiple equilibria; the other two
equilibria have been located by a numerical method.

Since the economy in the example is regular, its equilibria vary continu-
ously with the underlying parameters 4}, b, and wj. For small changes in
the parameters, there are only small changes in the equilibrium, and, in
particular, there are three equilibria. Nevertheless, if we make large
changes in the parameters, we can pass through a critical economy - an
economy that is not regular — and arrive at a regular economy with a
unique equilibrium. Figure 3.5 depicts the changes in the graph of
fi(ps, 1 — p)) as we change the parameters. In the figure, changing the
parameters first results in another regular economy with three equilibria,
then a critical economy with a unique equilibrium, but where the graph of
filp1, 1 — p,) is tangent to the axis, and finally a regular economy with a
unique equilibrium.

Our discussion of gross substitutability and the weak axiom of revealed
preference tells us in what direction we need to change the parameters to
obtain an economy with a unique equilibrium. As we increase b, = b, from
—4 towards b, = b, = 0, we move in the direction of a regular economy
whose excess demand function exhibits gross substitutability, and that
_ therefore has a unique equilibrium. (Of course, we should verify that
8f,(p)/dp, # 0 when b, = b, = 0; not surprisingly, it is.) Maintaining the
symmetry of the parameters, this equilibrium is at p = (0.5, 0.5). Let us fix
a' and w. Somewhere between b, = b, = —4 and b, = b, = 0, the economy
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Filp, 1-p)) 4

_1 wde
Figure 3.5 Passing through critical economy as the number of equilibria
changes

becomes a critical economy where 9f,(0.5, 0.5)/dp, = 0, and the number of
equilibria changes abruptly. This abrupt change is what is known as a
mathematical catastrophe. It occurs at (approximately) b, = b, = —3.5078:
for b, = b, < —3.5078 the economy is regular and has three equilibria, and
for b, = b, > —3.5078 the economy is regular and has one equilibrium.

We also know two conditions that ensure that the aggregate excess
demand function satisfies the weak axiom and, therefore, that the eco-
nomy has a unique equilibrium. First, if o} = 4} and al = @} (and, of
course, b, = b, = —4), then the consumers have identical homothetic pref-
erences. Maintaining the symmetry of the parameters and normalizing
a; = ai = 1, we know that when al = a2 = 1 there is a regular economy
with a unique equilibrium. Fixing b, and w/ at their original values, as we
decrease a} = 42 from 1024 to 1, we should pass through a critical eco-
nomy. We do so at (approximaiely) al=a%=41.6597: for
ai = a3 > 41.6597, the economy is regular and has three equilibria, and for
aj = a3 < 41.6597, the economy is regular and has a unique equilibrium.
Second, if wi = w} and w} = w3, then the consumers have proportional —
in this case identical - endowments and homothetic preferences.
Maintaining the symmetry of the parameters and fixing wl = u? = 5, we
know that when wi = w3 = 5, there is a regular economy with a unique
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equilibrium. Fixing a; and b; at their original values, as we decrease
wi = w% from 60 to 5, we pass through a critical economy at (approxi-
mately) wi = w? = 48.5714: for w! = w} > 48.5714, the economy is regular
and has three equilibria, and for w} = w} < 48.5714, the economy is regular
and has a unique equilibrium.

4 Production Economies

We now turn our attention to economies with production. We begin with
economies whose technologies are generated by an activity analysis
matrix, and later explain how the results obtained can be extended to
economies with more general technologies.

4.1 ECONOMIES WITH ACTIVITY ANALYSIS
PRODUCTION

In an economy with 1 goods consider an n X k activity analysis matrix

_1 0 “rn 0 aln+1 e a”‘.
A= (3 _]5 - (? a2n+§ e ﬂz;g ,
U U - ""'1 a,m+l S a,,k

of which a column 4; € R" is an activity, or feasible production plan, with
positive entries denoting outputs and negative numbers denoting inputs.
The first n columns are disposal activities which indicate that it is possible
to costlessly dispose of all goods. (See Koopmans 1951 for an exposition of
activity analysis; Kehoe (1982) explains how to relax the assumption of
free disposal in the context of the results presented in this section.) We
generate the entire set of feasible production plans by considering all sums
of nonnegative multiples of the columns of A: a vector x € R" is a feasible
production plan if

x = Ay for some y = (.

The elements of the nonnegative vector y = (y,, ..., y,) are called activity
levels. :

The set of all feasible production plans is the closed, convex cone
spanned by the columns of A:

Y =[x € R"| x = Ay for some y =0}.
We assume that no inputs are possible without outputs, that

YN R = [0},
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Combil}ing this specification of the production side of the economy with
the utility functions and endowments that specify the consumer side, we

define an equilibrium as a price vector P, and allocation (£, ..., £"). and a
vector of activity levels y such that

* given p consumer i chooses #! to solve
max u{x)
st.p-x=p-w
x =0

s prA=0,p-Ay=0;

[ ]
NgE!
=
i

&
+
NZE!
z

i=1 i=]

The second condition is the familiar profit maximization condition for a
constant returns production technology: given p, no feasible production
plan Ay, y = 0, can make positive profits, and the equilibrium production
plan Ay makes zero profit. The third condition is simply the feasibility
condition where explicitly modeling disposal activities allows us to write
the condition as an equality.

If we specify the consumption side of the economy using an aggregate
excess demand function f{(p), then an equilibrium is a price vector p and a
vector of activity levels $such that

* 5 A=<0,p Ay =0
* fp) = Ay.

To extend the use of the theory of regular economies and the index the-
orem of the previous section to economies with production, we define a
function g(p) that continuously maps the simplex into itself, whose fixed
points are equilibria, and which is almost always continuously differen-
tiable at its fixed points. Since f{p) is homogeneous of degree zero, once
again we are permitted a price normalization: 85, for 8 > 0, satisfies other
equilibrium conditions if p does. Again normalizing 37,5, = 1, we know
that any equilibrium price vector must be an element of the set

S,=|pER Ip-A=0,p-e=1},

where e = (1, ..., 1), so that p-e = ¥, p, The inclusion of the disposal
activities in A insures that all p in S, are nonnegative. Using the assump-
tion that no outputs are possible without inputs and the separating hyper-
plane theorem, we can show that S, is nonempty. It is easy to see that S, is
also closed and convex. In fact, it is a convex polygon with sides of the
form 37 ,a,p; = O (see figure 3.6). Define g( p) to be the closest point in S,
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P

P

Figure 3.6 The fixed point function for production economies

to p + f(p), in terms of Euclidean distance; that is, we first add f(p) top,
then project the sum onto S,. Since S, is closed and convex, the projection
is continuous. Consequently, since f(p) is continuous, so is g(p). In fact,
g(p) is the vector g € R" that solves

min (12)(g —p —f(p)) - (g —p — AP))
st.grA=0
g-e=1.

To see that p = g(p) if and only if there exists = 0 such that (p, ) is an
equilibrium of (f{p), A), we write out the necessary and sufficient condi-
tions for g( p) to solve the problem:
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gp)—p-fip)+Ay+re=0
gp)-A=0,g(p)-Ay =0
glp)-e=1

for some vector of Lagrange multipliers y € RY and some Lagrange multi-
plier A € R. First, notice that if (p, ) is an equilibrium, then, setting y = 9
and X = 0, we see that g(p) = p solves the problem. Second, notice that, if
g(P) = p, then

=) + Ay + re = 0,
Premultiplying by p, we obtain
—F fB)+p Ay +N\g-e=r=0

because of Walras’s law and the condition DAy =g(p) Ay = 0.
Consequently, (p, #) is an equilibrium where § = y is the equilibrium vec-
tor of activity levels.

To ensure that g(p) is differentiable at its fixed points, we assume that if
B is the n X € matrix of activities that earn zero profits at an equilibrium
(p. 9), then, first, the columns of B are linearly independent, and, second,
the vector = (9, ..., ) such that

fip)

By

is strictly positive. Kehoe (1980) proves that almost all economies satisfy
these nondegeneracy conditions.

4.2 CALCULATION OF THE INDEX AND
UNIQUENESS OF EQUILIBRIUM

Performing matrix manipulations that do not change the sign of the deter-
minant of [/ — Dg(p)], Kehoe (1980) shows that

sgn{det/ — Dg(p)]) = sgn{ det | ~B7 0 0
—e” 0 0

-wlel S )

Here B is the (r — 1) X € matrix obtained by deleting the last row of B. A
regular economy is one for which this expression is nonzero at every equi-
librium. If we define ,
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index(p) = sgn(det[I — Dg()]),

then the index theorem says that for a regular economy

> index(p) = +1,
p=g(p}

and once again we have a sufficient condition for uniqueness of equilib-
rium, that the determinant whose sign determines the index of a regular
cquilibrium be positive at every equilibrium, and a necessary condition,
that it be nonnegative.

-J B

-BT 0

That
be nonsingular at every equilibrium for (f{p), A) to be a regular economy
makes intuitive sense: renormalizing prices so that p, = p,, we see that this
matrix is just the Jacobian matrix of the functions whose zero is the equi-
librium,

¢
—filpis e s Prevr Pa) + _,Z;‘ byy; =0

¢ .
“ﬁ;-](pb sees Ppets ﬁn) + Z bn—‘l,,r'yj = 0

i=1

n=1

_Z{ Pbie = Bubre =0

n-1

_Zpibie — Pubpe = 0.
i=1

Since Walras’s law allows us to ignore the feasibility condition for good n,
we have a system of (r — 1) + ¢ equations in the n ~ 1 prices and the €
activity levels. Kehoe (1980, 1982) shows that, for almost all economies
(f(p), A), these equations are independent at all equilibria: that is, that the
economy 1s regular. l

Incidentally, by extending our regularity theory and index theorem to
economies with production, we have also extended it to economies with
the possibility of free goods. (There is a minor technicality in that the
domain of excess demand must be extended to a set that includes S in its
interior; see Kehoe 1980.) If a good j is free, then B contains the disposal
activity for good j. This means that one of the final £ columns of

A
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corresponds to the disposal activity for good J; that is, it has its element |
equal to —1 and every other element equal to 0. Furthermore, the corre-
sponding row of the matrix has its element J equal to 1 and every other
element equal to 0. Consequently, we can eliminate column J and row j
from J, eliminate row j from B, and eliminate the column of & correspond-
ing to the disposal activity without changing the determinant. In other
words, at any equilibrium where a good is free, we can simply ignore that
good in the definitions of a regular equilibrium and of the index of the
equilibrium,

The weak axiom continues to imply uniqueness of regular equilibria in
production economies. Suppose that f{ p) =4y, p'-A=<0 and
Ap*) =Ay', p> A=<0. Then, as in the exchange economy case,
P> fip") =0 and p'- f(p?) = 0, which implies that f{p') = f{p?) and that
6p' + (1 - 0)p? for 0<8 =1 is an equilibrium. Consequently, either p!
and p? are proportional, or the equilibria are critical.

It is easy to show that the weak axiom implies that the determinant
whose sign determines the index of a regular cquilibrium is nonnegative
and, in general, positive. Let C = [B ] be the n X (€ + 1) matrix whose
columns are the € activities in use at the equilibrium and a column of all
ones. Our nondegencracy assumption on B, p-B=0,and p-e =1 imply
that C has rank €+ 1=n. Suppose that £+ 1<, and let V be an
n X (n—~€—1) matrix whose columns span the null space of C. Then
index(p) is determined by the sign of the determinant of

B

Postmultiplying this matrix by a nonsingular (n + €) X (n + €) matrix and
premultiplying it by the transpose of the same matrix does not change the
sign of the determinant. Consequently, the index is determined by the sign
of the determinant of

& oo [0 1 6 ]

0 (CTC)-!.
[—VTDf(p‘)V -V'DRp)C OJ
=| -C’Dfp)V -CTDRB)C 1 |,
0 -1 01

which is equal to
det[-VTDf(p)V].

The weak axiom implies that for any v € R" such that v - ) = 0 angl Vis
not proportional to p, v - Df{(p< 0. For any w € R**"1, Vw € R" satisfies
w-VIf(p)=w-VBy=0 and w-Vie=0%p-e. Consequently,
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—VIDf(p)V is positive semi-definite and hence has a nonnegative and, in
general positive, determinant.

Notice that if € + 1 = r and C is a nonsingular » X n matrix — that is, if
n -1 activities are used in equilibrium, then the index is necessarily +1.
Consequently, any restrictions on an economy (f{p), A) that imply that
any possible equilibrium has n — 1 activities in use imply uniqueness of
equilibrium. One well-known set of conditions that imply that there must

be n — 1 activities in use at equilibrium are those of the nonsubstitution
theorem of input—output analysis:

there is one nonproduced good, say, good n:a,, < 0forj=1, . k;
excess demand for the other goods is always positive: f(p) > 0 for
i=1,...,n—-1,;

there is no joint production: @, > 0 for at mostone i forj = 1, ..., k;
there exists a nonnegative vector of activity levels y that yields
positive outputs of the produced goods: X.ay,>0, i=
1,....,n—1.

Ope way to insure that the second condition holds is to allow initial
endowments only of the nonproduced good, usually called labor. Since all
n — 1 produced goods must then be produced, and since we rule out joint
production, n — 1 activities must be run at positive levels in any equilib-
rium. The nonsubstitution theorem itself says something stronger than that
the equilibrium is unique: it says that the efficient combination of activities
B, and hence the equilibrium prices, are determined solely by the technol-
ogy represented by the matrix A (see, for example, Samuelson 1951).

Scarf has shown that if we can impose conditions only on f{p), and not
on the production technology, then the weak axiom is the weakest condi-
tion that implies uniqueness of equilibrium (see Kehoe 1985b). Suppose

that p*f- (p') =0, p'f- (p*) = 0,and f{ p') # f(p?). Letting
A =[=I fp) p)),

we see that p! and p? are both distinct equilibria. In other words, if f(p)
does not satisfy the weak axiom, we can invent a production technology so
that the economy has multiple equilibria.

4.3 EXAMPLE 2

Arrow, Block, and Hurwicz (1959) have shown that gross substitutability
in f( p) implies that the weak axiom holds at least in comparisons between
the equilibrium price vector of an exchange economy and any nonequilib-
rium price vector. Unfortunately, gross substitutabiiity does not imply that
the weak axiom holds in general, as the following example demonstrates.

Consider a static production economy with two consumers and four
goods. Consumer #, i = 1, 2, has the utility function
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4
ui(xla X35 X3 x4) = Za,‘log X;
=1

where a/ = 0. Suppose that the two consumers have the Symmetric para-
meters a} = aj = 0.75, al = a? = 0.25, a=a,=d=ai=0, wl=wi=
wi=wi=0 wi=wl=5 wl=wi=1 In other words, the consumers
derive utility from consuming goods 1 and 2 and have endowments of
goods 3 and 4. It is a straightforward exercise to verify that the aggregate
excess demand function f{ p) exhibits gross substitutability. Calculating the
Jacobian matrix of the aggregate excess demand function at P = (0.25,
0.25, 0.25, 0.25), we obtain

~24 0 16 8

| 0o 24 8 16
biBY=1 o 9 o of

0 0 0 o0

Notice that even though f{ p) exhibits gross substitutability, it violates the
weak axiom: Walras’s law implies that —p - DA(p) = f(p) = (6, 6, —6, —6).
Setting v = (1, 0, 3, —2), we see that v- f(p) = 0, and v is not proportional
to p, but that v - Df(p)jv = 8 > 0. Therefore, we should be able to construct
a production technology for which the economy (f(z), A) has multiple
equilibria.

Suppose that we set

-1 0 0 0 4 -1
0 -1 0 0 -1 4
0. 0 -1 0 =2 -1Y7
0 0 0 -1 -1 =2

Then the economy has the three equilibria listed below.

Equilibrium 1
b4 % b £ u;
5| 625 3.125 0.0 0.0 1.6593
X[ 0.4167 1.875 0.0 0.0 0.2526
b | 03 0.2 0.5 0.0
¥=(0.0,0.0,0.0,0.3333, 2.1111, 1.7778)
‘Equilibrium 2
2| 45 1.5 0.0 0.0 1.2294
£1 15 4.5 0.0 0.0 1.2294
pi| 025 0.25 0.25 0.25

¥=(0.0,0.0,0.0,0.0,2.0,2.0)
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o ‘ Equilibrium 3 o
% % 2 b4 U;
21 1875 0.4167 0.0 0.0 0.2526
£ 3125 6.25 0.0 0.0 1.6593
pi 1 02 0.3 0.0 0.5

¥= (0.0, 0.0,0.3333, 0.0, 1.7778, 2.1111)

This example has been constructed so that at equilibrium 2, the index is
—1, because

24 0 -16 4 -1

;A 0 24 -8 -1 4
[J g]= 0 0 0 -2 -1
-4 1 2 0 O

1 -~4 1 0 0

has determinant equal to —72.

This example can easily be perturbed to make all of the utility parame-
ters 4 and all of the endowments w; strictly positive, so that df(p)/dp; > 0
for ail j # i. In economies with production, however, it is natural that there
be some goods for which there are no final demands, some goods for
which there are no endowments, and even some goods for which there are
neither. Kehoe (1982) extends the theory of regular economies to such
economies,

4.4 MONOTONICITY AND THE WEAK AXIOM

Examples like that presented above suggest that to guarantee the unique-
ness we need either to develop conditions that guarantee that the weak
axiom holds for aggregate excess demand or to develop joint conditions on
aggregate excess demand and on the production technology to guarantee
that the index is always positive in equilibrium. We discuss each of these
approaches in turn.

Although the weak axiom itself does not aggregate, because the sum of
two excess demand functions that satisfy the weak axiom may not satisfy
it, there are stronger conditions that are easily shown to imply the weak
axiom and do aggregate. Two such conditions are the monotonicity condi-
tions (1) there exists zE R%, z 0, such that, if p-z=g-z and
f(p) # f(g), then (p — q) - (f(p) — flg)) <0, and (2) there exists z € R},
z # 0, such that, if v- z = 0 and v # 0, then v - Df{p)v <0. In fact, the sec-
ond condition is just the differentiable version of the first: it is easy to
show that v-Df(p)v <0 implies (p — q)-(f(p) — flg)) <0, and that
(p—q)-(fip) — flg)) <0 implies v-DA(p)v =0 (see Mas-Colell 1985:
ch. 5). It is essential {0 notice the importance of the vector z that normalizes
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Hildenbrand (1983) considers an cconomy with a continuum of con-
sumers distributed over the interval [0, 1]. Suppose that each of these con-
sumers has the same utility function and an endowment that is
proportional to the aggregate endowment. If the utility function is homo-
thetic, then, as we have seen in section 2.5, the aggregate excess demand
function satisfies the strong axiom. For arbitrary utility functions, however,
Mantel (1976) demonstrates that the aggregate excess demand function is
¢ssentially arbitrary. Hildenbrand considers the case where income is dis-
tributed with nonincreasing density: let vw be the endowment of consumer
of income level v, v € [0, 1], where w & R=: 1ot u be the density of con-
Sumers over income levels, and suppose that p is nonincreasing. Let
z(p, y) be the solution to the problem

max u(x)
St.p-x=y
x =0,

Then the aggregate - in this case, the mean - excess demand function js

78) = [ WO elp, 0 ) = i

Hildenbrand shows that this function satisfies (p ~ 9)-(Ap) - flg) <0
forp-w=g-wand f(p) # fig).

Supposc now that we have an economy made up a finite number of
types of consumers where there is a continuum distributed over [0, 1] of
each type, each type has a different utility function, but all consumers have
endowments that are proportional, and incomes are distributed with non-

the same normalizing vector w, it satisfies the weak axiom.

Mitiushin and Polterovich (see Mas-Colell 1991) examine conditions
under which an individual excess demand function (xi( p) — w') is mono-
tone with respect to the endowment vector w'. They find that a sufficient
condition for a twice continuously differentiable, concave, and monotoni-
cally increasing utility function u(x) to generate a monotone excess
demand function (¥(p) — w') is that

x - Doufx)x

Duey: <4forallxe R,
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In an economy where all consumers have proportional endowments and
all utility functions satisfy this criterion, the aggregate excess demand
function is monotone with respect to the aggregate endowment vector,
and hence satisfies the weak axiom. The Mitiushin—Polterovich condition
generalizes considerably the Eisenberg—Chipman requirement that utility
functions be homothetic: when we usc the homogeneous-of-degree-one
representation of utility — u,(6x) = 0u,(x) for all 6 > 0, x € R"., —~ we obtain

x - D%u(x)x

Dux)x

Other significant results concerning aggregate excess demand functions
that satisfy the weak axiom have been obtained by Freixas and Mas-Colell
(1987), who consider conditions on individual Engel curves, and by
Grandmont (1992), who considers conditions on distributions of utility
functions.

There is another curious condition that implies monotonicity of excess
demand and may help us appreciate the example of nonuniqueness in the
previous section. In that example there are four goods, and the excess
demand function satisfies gross substitutability, but violates the weak
axiom. Kehoe and Mas-Colell (1984) argue that no such example can be
constructed if there are fewer than four goods. If n = 2, gross substitutabil-
ity can be trivially shown to imply the strong axiom. If » = 3, although
gross substitutability does not imply the strong axiom, it does imply a
monotonicity condition that implies the weak axiom. Specifically, gross
substitutability implies that for any price vectors p, ¢ € R5.,, that are not
proportional, there exists 6>0 such that (p —9q) - (f(p) — flg) <0.
Walras’s law implies that if this condition holds, then p - f{g) = 0 implies
§-fp)=0.

To see that gross substitutability implies the monotonicity condition,
consider two price vectors p, g € R, that are not proportional, and sup-
pose, without loss of generality, that p,/q, = p,/q, = p./q; with at least one
inequality strict. Applying the definition of gross substitutability twice, we
see that f,(p) < £,(9), fi(p) = fi(q), and f{p) # fg). There are four cases
to be considered:

» when ecither fi(p)<fi(g) and pi/q,>piq, or fi(p)<flp) and
P4/8> > py/qs, We set § = p,/g, and calculate (p — 6g) - (f{p)) — f(g)) as

(p1 = 8q)(fi(p) — fi(a)) + (ps — 8g:3)(fs(p) — Filg)) < 0;

* when fi(p) = fi(g) and p/q, = pr/q,, we know that fi(p) = fi(¢), and
A p) = f{q), with one inequality strict, and we set & = ps/qs;
similarly, when f,(p) = fi(q) and p)/q, = p,/qs, we set 8 = p,/qy;
finally, when f,(p). = fi(q) and fi(p) = f(q). but py/q; > /g, > p/qs, We
set 8 = py/q; if f,(p) < fo(g), and we set & = pi/q, if fo(p) > fo(q)-
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4.5 EQUILIBRIUM IN FACTOR MARKETS

If we cannot guarantee that the aggregate excess demand function Ap)
satisfies the weak axiom, we must look for combinations of conditions on
f(p) and on the production technology A if we want to ensure uniqueness
of equilibrium in a production economy: it is easy to show that if there is
more than one p € § such that p- 4 =< 0, then there exists f(p) such that
the economy (f{p), A) has multiple equilibria (see Kehoe 1983, 1985b); in
other words, no condition on the production technology alone — except for
complete reversibility, that there is only one p € § for which pP-A=0-
can guarantee uniqueness. As we have seen, one example of a combina-
tion of conditions on consumption and production that guarantees unique-
ness is the conditions of the nonsubstitution theorem of input-output
analysis. f

There are two ways in which the conditions of the nonsubstitution theo-
rem can be generalized. Both involve reduction of the equilibrium condi-
tions to equilibrium in factor markets. In each case we assume that the
economy has the following generalized input-output structure:

* there are h<n factors of production: a, <0 for i=1, ..., h and
i=1....k
excess demand for the other n — £ goods is always positive;
there is no joint production;
production of positive amounts of the n ~ & produced goods is
possible.

The first approach to reducing the equilibrium conditions to equilibrium
in factor markets utilizes the equilibrium zero profit condition (see Kehoe
1984). Let p; = (pyy, - - - » P1a-y) NOW be the vector of prices of produced
goods, and let p, = (p,,, ..., py) be the vector of factor prices. Partition A
into

where A, 1s (n — h) X k and A, is h X k. Similarly, partition f{p,, p,) into
(fl(Pl’Pz): fz(ph pZ))'_ .

First, consider the case where A consists of 21 — £ activities: n disposal
activities and an n X (n — £) matrix with one activity to produce each of
the produced goods. The (n — k) X (n — k) matrix B, is a productive
Leontief matrix; under a mild decomposability assumption, B! is strictly
positive (see, for example, Debreu and Herstein 1953). The zero profit
condition p, - By + p, - B, = 0 implies that p, = —(B,B;!)7p,. Market clear-
ing for produced goods, B,§ = fi(#,, p,), implies that $ = B{'f,(5y, ). The
remaining equilibrium condition is market clearing for factors B,j =
fi( P, B,). We define an imputed excess demand function for factors &(p,)
by the rule )
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i

&(py) = Fi(—(B,B YDy pa) — B.BT (- (84T P2)

It is easy to verify that &(p,) is continuous, is hageReOUSs of degree
zero, and obeys Walras’s law. Furthermore, $(f) <fsequivalent to

fz(ﬁi,ﬁz)_ < B,Brfi(P1.P2) = B

Conscquently, p, is an equilibrium of the A-good adage economy &(p,)
if and only if (p,, f, §) is an equilibrium of theyed production eco-
nomy (f(p), A). :

When there is more than one possible activity mducing each pro-
duced good, the situation is slightly more complist T calculate &(p»),
we start by solving the linear programming probls

min —p, + A;y
st.Ay=e¢e
y=0.

The nonsubstitution theorem says that for any vl of factor prices p,
there is an efficient set of n— h activities fhi {8 DOt Vary as the
right-hand side of the conmstraint varies. Letighse 72— A activities
be the matrix B, we proceed as before. Kehos (#) shows that when
the linear programming problem becomes ggunte and there are
more than n — h efficient activities, the exces gmnd for factors be-
comes a convex-valued, upper hemi-conft® C(?l'rcspond_el.lcc.
Equilibrium in factor markets still assures qiliim in the original
economy.

Any condition, such as gross substitutabiliy i), that guarantees
uniqueness in the factor market equilibrium guiees uniqueness of
equilibrium in the original economy. The major dntage of the reduc-
tion of the equilibrium conditions to factor maidcaring is that 1t 1s a
technique frequently used in applied models, nille great rec.iucuon 1n
dimensionality that it allows can sometimcs pri @ €Xtiaustive search
over factor price-space to guarantee Umiquens f equilibrium 1n an
applied model that satisfies no known analyticl wiitions 5‘_1fﬁ°1¢{1t for
uniqueness. Kehoe and Whalley (1985) explojlahon 1n dimension of
this sort to ensure that two large-scale applied el equilibrium models
have unique equilibria. .

The second technique for reducing the equiiineonditions to factor
market clearing deals with the specification of frosumption side of the
economy in terms of utility functions and endonett (see, for .examP}e,
Taylor 1938 and Rader 1972b: ch. 9). There penonsumers with utility
functions u{x,, x,) and endowments w* = (0, yjwiere once again we
have partitioned x and wi into vectors of lenghlt ‘h) and h. We define
an imputed utility function for factors vi(z) as tiegbtion to




70 TIMOTHY J. KEHOE

max u,(x;, x,)
st.x; = Ay
X, Xy 2 0.

It is easy to show that a price vector P and an allocation 2!, ..., #” is an
equilibrium of the h-good exchange economy with utility functions vi(2)
and endowments wj if and only if there is a corresponding equilibrium of
the original n-good production economy. In section 4.8 we present condi-
tions developed by Mas-Colell (1991) that ensure that this reduced
exchange economy exhibits gross substitutability. To do this, however, we
must first allow for more general production technologies.

4.6 EXAMPLE 2 (CONTINUED)

Our example with activity analysis production in section 4.3 has the gener-
alized input-output analysis structure discussed in the previous section
where n — h = h = 2. Given a vector of factor prices (p;;, p»), we can usc
the zero-profit condition to calculate the prices of the produced goods:

[Pn] — _[ 4 _1]_1[ =2 _1] [P:u] — [0-6P21 + 0-4P22]_
P2 -1 4] -1 2] |px 0.4p,, + 0.6p,
Excess demands for the two produced goods are
4py + 2p;, 20p, + 10py
3p, + 2p
fl](P) - pll - b3 | 2 ‘
fia(p) 2py + 4pp 10p,, + 20p,,
Pr 2py + 3pyp
The equilibrium activity levels are
20p,, + 10p,, 16p;, + 8p,, + 2py + 4py,
y 4 -1 3px + 2py 9pn +6pn  6py t+ 9y
l — —
[yz] - [-—1 4] 10py; + 20py, 4py + 2py, + &pay + 16py,
2py + 3py 9, + 6py 6p + 9py

Consequently, the imputed excess demand for the two factors is

16py + 8py 2Py + 4py
9p, + 6p 6D, + 905
S Pn, P2) | _ |2 1] “ = " _ [6]
b2 P21 P22) 1 2 4p,, + 2p,, 8p,, + 16p,, 6
9 +6pp  6py + Iy
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12py + 6pz | 4ps + 80 _
3put20n  2py +3pp
8py + 4px + 6py + 12py, _
| 3pnt2pn  2pn +3pn

As before, there are three equilibria: (py, ) = (1, O),' (Pas Pu) =
(0-5, 05): and (ﬁ21’ ﬁ?.Z) = (0’ 1)'

4.7 GENERAL PRODUCTION TECHNOLOGIES

Consider an economy in which any vector that satisfies the constraints

flx) =0
x;,z0,i=1,...,k
x<0i=h+1,...,n,

is a feasible net-output combination. Here f is a constant-returns produc-
tion function that produces the first # commodities as outputs and employs
the final n — h commodities as inputs. We assume that fis homogeneous at
degree one and concave. For example, :

ﬂxl’ X2 x3) = 9(_-‘72)"('“953)1—“ —X

is the familiar Cobb-Douglas production function where 8> 0,1 = o = 0.

For many purposes, we find it convenient to specify production tech-
nologies in terms of profit functions rather than production functions. For
any price vector p, let x(p) be the vector that maximizes p - x subject to
feasibility and some sort of constraint on the level of production, such as
x; = 1 orx - x = 1. Given our assumption of consiant returns (0 scale, such
a constraint is necessary to keep profits from becoming unbounded.
Define the profit function a(p) = p - x(p). It is well known that a(p) is
homogeneous of degree one, convex, and continuous even if x(p) is not
unique. If a(p) is continuously differeatiable, Hotelling’s lemma says that
Da(p) = x(p)” (see, for example, Diewert 1982).

Specifying the production technology in terms of k profit functions is a
generalization of the activity analysis specification where a(p) = Xi.1a,;D:
Let A(p) be the n X k matrix whose columns are the gradients of
the profit functions. Hotelling’s lemma and constant returns allow us to
interpret A(p) as a matrix of activities. Notice that a(p) = A( pYp. We
define an equilibrium as price vector p and a vector of activity levels such

that

> a(p)=0,a(p) 9=0
s fp)=A(D).
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If we define B(p) as the n X € matrix whose columns are the gradient
vectors of the £ profit functions that earn zero profits at p, we can con-
struct a function g( p) whose fixed points are equilibria, and define a regu-
lar economy and the index of an equilibrium as before. Let H(p) be the
n X n weighted sum of the Hessian matrices of the € profit functions that
earn zero profits at p; the weights are the appropriate activity levels,

¢

H(p) = 5 D)y

j=1

Kehoe (1983) calculates the index of an equilibrium as

| ( [—Dﬂﬁ)+h’(ﬁ) B(p) eD
index(p) = sgn| det| —B(p)” 0 0
—eT 0 0
= sgn(det[ :‘%:- H ’g])

Here J and A are the (n — 1) X (n — 1) matrices obtained by deleting the
last row and column from Df(p} and H($), and B is the (n — 1) X € matrix
obtained by deleting the last row from B(p).

An advantage to this general approach is that it can easily be extended
to economies with production technologies that exhibit decreasing returns.
In such an environment we need to specify production functions for indi-
vidual firms and to distribute the profits of these firms to consumers. The
situation can then be treated as a special case of constant-returns produc-
tion where we define an addition good as a primary input to account for
the profits of each firm, and endow consumers with a total of one unit of
this input in proportions equal to their shares of profits; see McKenzie
(1959) for details of this construction. For an economy with decreasing
returns production, Kehoe (1983, 1985b) calculates the index of an equilib-
rim as

sgn(det[ ~Difi8, #)~D.f(5, DA(P)" + H(p) eD

—el 0

Here © = a(p) is the vector of profits of the k firms — alternatively thought
of as the prices of the k primary inputs that convert the decreasing returns
technologies to constant returns ~ and D,f(p, ) is the n X k matrix of
derivatives of consumer excess demands with respect to this vector. In this
context the » X n matrix H($) can be thought of as the Yacobian matrix of
the excess supply function B(p)e.

Suppose that D, f(p, £) + D,f(p, R)A(H)” has all of its off-diagonal ele-
ments positive. Kehoe (1985b) argues that in this case, D, fp, ®) -+
D, f(p, R)A(P) is negative semi-definite. Since each of the profit functions
is convex, we already know that H(p) is positive semi-definite. This implies
that the formula for the index is nonnegative and, in general, positive.

Rader (1972a) originally noticed this result that gross substitutability
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in f{p,a(p)) implies uniqueness of equilibrium. Unfortunately,
D,f(p, a(p))A(p)" does not depend on consumer’s utility and endow-
ments alone; it involves a complex interaction of income effects in con-
sumption and production decisions. It may be possible, however, to
develop conditions that ensure that it has the required sign pattern.

The results of section 4.5 concerning the reduction of equilibrium to fac-
tor market clearing can be easily extended to the more general production
technologies discussed in this section. Mas-Colell (1991) considers
economies that have the generalized input-output structure of the previ-
ous section and satisfy the additional restriction that consumers have no
utility for factors of production. (By defining additional goods and produc-
tion activities, we can always insure that this condition holds.) He uses the
second reduction, the one that defines induced utility functions for factor
supplies, to show that in an economy in which all utility functions and pro-
duction functions are Cobb-Douglas, the reduced exchange economy also
has Cobb-Douglas utility functions, which implies that it exhibits gross
substitutability and hence has a unique equilibrium. We provide an exam-
ple that illustrates this result in the next section. Mas-Colell (1991) also
generalizes this result to economies in which utility functions and produc-
tion functions are super-Cobb-Douglas. The supcr-Cobb-Douglas condi-
tion is that the functions locally exhibit at least as much substitutability as
a Cobb-Douglas function. In the case of a utility function u(x), for exam-
ple, the requirement is that for every x € R} there is a Cobb-Douglas
function ,(x) and a neighborhood U, C R}, X € U,, such that u,(%) = u(¥)
and u,(x) < u(x) for all x € U, (see figure 3.7).

4.8 EXAMPLE 3

Consider an economy in which there are two consumers with the same
utility functions and endowments as in example 2, but where production
possibilities are described by six profit functions a(p)=-—ppi=12,34,
and

as(p) = 4p, — 4p3p3°pe”

1.25,,025,,0.5

ag(p) = 4p, — 4p1“ P Ps

|
These are the profit functions corresponding to the Cobb-Douglas pro-
duction functions :

%y = 895~ B (—x)* (—x)"
X = 80-5( - xl)U.zs(_ x3)0.25( — x4)05.

The parameters of these functions have been chosen so that at p = (0.25,
0.25,0.25,0.25),4{(p) <0,/ = 1,2, 3,4, as(p) = ag(p) = 0, and
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4 -1
Bpy=|2; 4
-1 =2

Consequently, as in example 2,  and $=1(0,0,0,0,2,2) is an equilibrium.
We can find index( p) by calculating

0 0 0 0 3 0 -1 =2
ipy=1? 3 -2 -1 , | 00 o oo
Das(P) 0 -2 4 -2 sDaG(P)_' -1 0 3 -2 |

0 -1 =2 3 -2 0 -2 4

multiplying by activity levels §; = 2 and Y% = 2, summing to obtain

6 0 -2 -4
~_| 0 6 -4 -2
He)=| 2 4 14 g

-4 -2 -8 14

ux) = u(x")

u(x) = u(x")

u(x) = u(x)

w(x) = u(Xx)

Xy

Figure 3.7 Mas-Colell’s super-Cobb—Douglas condition
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and then plugging this expression into the matrix whose determinant
determines the index,

30 0 -18 4 -1
[—f-’r-l-? B ] 0 30 -12 -1 4
_BT 0

5 = | -2 -4 14 -2 -1

-4 1 2 0 0
1 —4 1 0 o0

Since the determinant of this matrix is 2520, index(p) = +1.

In fact, this economy has a unique equilibrium. One way to see this is to
use Mas-Colell’s (1991) argument that reduces the economy to a two-good
exchange economy in the space of factors. For a vector of factor prices
(ps, ps) we consider a solution to the problem

max v{(zs, 24) ) )
S..D3Z3 + PuZy Epyws + pawy
23 2, = 0.

'(Here we have left goods with their usual numbering to simplify notation.
Our definition of v,(z) implies that this problem can be rewritten as

max aq; log x, + & log x,
S.t.x; + vy = 8050205025
X, + vy < 80VIBVIS
P3(vs + vip) + PV + V) = pawi + powj
X, v; =0,

where v; is the amount of good i used in the production of good j, and
Zi=vy + vy, i =3, 4. The solution to this problem is associated with
Lagrange multipliers p,, p,, and A for the three constraints. We are justi-
fied in sctting A = 1 because, if we solve this problem once, rescale p, and
P4 to be Ap; and Ap,, then re-solve, we find that A = 1. Letting y; denote the
total production of good j, we find that

1 =025 || pn | |k | i i “i]
[_0-25 1 ] [Pz)’z] [szz] (Paws + pywy) [ﬂz' )
Similarly,
[Pzza] = [Pa("sl + Vsz)] - [0'5 025] [PJY1 ]
PaZy Pa(Vay + Va2) 025 05 P:Y:
piss | ,- ~[os 02571 —025][ df
[m,] = (pwi+ pwd) [0.25 05 [l -025 1 a |

) | 0.6af + 0.4a
= (pawé +P4W"1} [0403 + 0%]
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This says that the imputed demands for factors are those of the
Cobb-Douglas utility function

V{23, 23) = (0.6a] + 0.44}) log z; + (0.4a] + 0.6]) log z,.

The excess demands for factors in this economy are

0.55(5p; + p.) + 0.45(p; + 5p,) 5 —14p, + 14p,
P Ps . ps
0.45(5p, + p,) - 0.55(p; + Sp.) -6 —14p; + 14p,
. p4 p4 J L 5P4 .

The unigue eyuilibrium of this two-good exchange economy is (p;, fa) =
(0.5, 0.5), which corresponds to the equilibrium that we have already
found for the four-good production economy.

5 Economies with Tax Distortions

In this section, we generalize our analysis to economies that allow such
distortions as taxes and tariffs. This sort of generalization is essential if our
results are to be useful for applied work, since most applied general equi-

librium models are designed to analyze such distortions (see Shoven and
Whalley 1984 for a survey).

5.1 EQUILIBRIUM IN AN ECONOMY WITH TAXES

Consider an economy in which consumer i solves the problem
max u,(x)

s.t. Z pl+)xsp-w+6r

J=1
x =0,

Here 7, = 0 is the ad valorem tax on the consumption of good j and 6, = 0,
216, = 1, is the share of total tax revenue that is rebated to consumer i as
a lump sum. In many models 8, =0,i=1,...,m— 1, and 6, = 1, where
consumer m is the government.

We specify production possibilities using an n X £ activity analysis
matrix A that allows free disposal but no output without inputs.
Production taxes are specified by another n X & matrix A* where

a?; = a,), - O-l’f | a,-j- [,
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where o;; 2 0 is the ad valorem 1ax on the input or output of commaodity i
in activity j. With this notation, the vector of after-tax profits, one for each
activity, is p - A*, and the tax revenue generated by the production plan
Ayisp- (A — A%)y. _

In this economy an equilibrium is a price vector p, a level of tax rev-
enues 7, an allocation £, ..., £, and a vector of activity levels ysuch that

* Given p and #, consumer i chooses &' to solve the problem of maximiz-
ing utility subject to the budget constraint;

. “-A*ﬁO,ﬁ-A*ﬁ=0;

o ILE = AP+ T,

o F=ERap(l + HERE P (A — AR

"

The final condition requires that the amount of tax revenues that the con-
sumers, including the government, take into account when making spend-
ing decisions is equal to the total amount collected as a result of these
decisions.

In an economy involving several countries, we would model the same
good available in different countries as different goods. A tariff would be a
tax on the output of the activity that transforms the good in one country to
the same good in another country. Kehoe (1985a) shows further how this
framework can be extended to include specific, as well as ad valorem, taxes
and subsidies and income taxes with any degree of progressivity.

In the specification of this economy that relies on an aggregate excess
demand function, we set

ﬂnﬂ=§;ﬂnn—wv

We also need to define a function that tells us the total taxes paid by con-
sumers,

Kp,r) = ; pfl+ 'rf); xi(p. 7).

The two functions f{(p, r) and (p, r) are continuous, at least for strictly
positive p and nonnegative r; f{ p, r) is homogeneous of degree zero and
t(p, r) is homogeneous of degree one; together, f(p, r) and t(p, r) satisfy a
modified version of Walras’s law:

p-fp.P) +ip A=,

An equilibrium is now (9, 7, §) such that
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3.2 REGULAR ECONOMIES AND THE INDEX
THEOREM

Kehoe (1985z) extends the theory of regular economies and the index the-
orem to economies with tax distortions by constructing a function g(p, r)
that continuously maps a compact, convex set into itself, whose fixed
points are equilibria, and which is almost always continuously differen-
tiable at its fixed points. '

If we restrict attention to economies where 7 is always positive, a regular
economy is one for which the matrix

[—Dl 1,9 B]
— B*T O

is nonsingular at every cquilibrium. (See Kehoe 1985a for the case where
#=0.) Here D, f(p, r) is the n X n matrix of partial derivatives of f{p, r)
with respect to p; once again B is the n X € submatrix of A whose columns
are those activities used at positive levels in equilibrium; and B* is the cor-
responding submatrix of A*.

We can think of this matrix as the Jacobian matrix of the functions
whose zero is an equilibrium:

—f(p.r) + By

- B*TP

{p,r) = r+p-(B~ B¥y
We use homogeneity to normalize r = 7, and we use Walras’s law to drop

the final equation.
The index theorem says that if we set

index(g, ) = sgn(det{ _D'ﬂf 1;‘:?" gD

0
0
0.

then

> index(p,r) = +1.
(pr) = glpy

In the more general case of production technologies described by profit
functions, the crucial matrix becomes

[—Dif(ﬁ,?ﬁg(m B(}:)J
~BYEY 0]

where H(p) is defined as in section 4.7.
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5.3 EXAMPLE 4

Unfortunately, even the extremely restrictive assumptions of the nonsub-
stitution theorem and of a representative consumer — each of which are
sufficient separately to imply uniqueness in economies without distortions
— are not sufficient to imply uniqueness with distortions. The point has
been made by Foster and Sonnenschein (1970) and Hatta (1977), who pre-
sent graphic examples of economies with representative consumers and
input-output structures but with multiple equilibria.

To see the possibility of a multiplicity of equilibria even in an economy
that satisfies these restrictive assumptions, consider an economy in which the
consumer has utility for consumption of two produced goods and endow-
ment only of the third, nonproduced good. Specifically, the utility function is

—~(14 — x)P(x, + 1)}t ifx, <14
”("“x”xﬂ:{ ( X, 2—(13 ) ifx, > 14

and the endowment vector is w = (0, 0, 4). Suppose that production possi-
bilities are given by the activity analysis matrix

-1 0 0 9 -1
A=| 0 -1 0 -1 3.
0 0 -1 -2 -2

We assume that the representative consumer pays no taxes, but that pro-
ducers pay an ad valorem tax o,, = 2/3 on output of good 1:

-1 0 0 3 -1
A¥*=| 0 -1 0 -1 31
0 0 -1 -2 -2

(Equivalently, we could set af, = 9 and a = —3 and have consumers pay
a tax 1; = 2 on purchases of good 1.)
The excess demand function is

0 if 8p;+ 2r<14p, - 2p,
flp.n= {(—-14px +2p, + 8p, + 2r)p, if 4dp;+r=<14p, ~2p, =<8p, +2r
@p; + nip if14p, — 2p, <dp, + r
(4p, + r)ip, if 8p,+ 2r=14p, — 2p,
flp.r) = {(141’1 - 2p, ~4p; - nip, if 4p,+r=14p —2p, <8p, +2r
0 if 14p, — 2p, < 4dp, + r

filp, )y = —4.

This economy has three equilibria, which are listed below and depicted
in figure 3.8.
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equilibrium 1

equilibrinm 2

equilibrium 3

i

X

Figure 3.8 Nonuniqueness in the example with distortionary taxes

Equilibrium 1
1 2 3
p; i 03333 0.33333 0.3333
%1 0 5.2 0
F=104,u=—-316129
¥=1(0,0,0,0.2,1.8)
Equilibrium 2
1 2 3
B 0.3333 0.3333 0.3333
b 8 2 0
F=2u=-—213333
$=1(0,0,0,1,1)




UNIQUENESS AND STABILITY 81

Equilibrium 3
1 2 3
pi| 03333 0.3333 0.3333
6| 13 0 0
F=3,u= 10000
$=1(0,0,0,1.5,0.5)

This example has been constructed by choosing parameters so that at
equilibrium 2 index(p) = -1,

6 -6 -24 9 -1

200 8] R 13
_B*T 0 -

-3 1 2 0 o0

1 -3 2 0 0

has determinant —192. Consequently, the economy necessarily has multi-
ple equilibria. Notice that these equilibria are Pareto-ranked.

5.4 A SUFFICIENT CONDITION FOR UNIQUENESS

We have a mathematical condition for uniqueness of equilibrium in
economies with distortionary taxes that is sufficient and almost always nec-
essary — that the index be positive at every equilibrium. The problem is in
translating this mathematical condition into easy-to-check economic con-
ditions.

In this section we present a set of such conditions that rule out the
multiple equilibria of the example in the previous section. As Foster
and Sonnenschein (1970) and Hatta (1977) point out, such an example
depends on one of the goods being inferior, which means that
afi(p, #)/or > 0 for some i. Kehoe (1985a) employs this observation and the
index theorem to develop a set of sufficient conditions for uniqueness:

* suppose that the economy {f{p), #(p), A, A*) satisfies the conditions of
the nonsubstitution theorem presented in section 4.2;

* Jetting B* be the matrix of (n — 1) efficient activities guaranteed by the
nonsubstitution theorem and letting 5 € § be the unique vector of effi-
ciency prices associated with the production matrix B in the sense that
p- B = 0, suppose that p- D, f(p, r) > 0 for any choice of p and r.

To see why these conditions work, we partition the matrix whose deter-
minant determines the index,
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" —D —d B
-D , B 1 12 1
[_B‘»;{(ﬁ 7 0 J = {“‘du —dy sz

~B¥T b7

where Dy, is (n ~ 1) x (n—1),dy is (n— DXL dyis1X(n— 1), dy,
is 1 X1, and so on. We have numbered goods, so that the last is the
nonproduced factor of production. For production to be feasible, the
(n — 1) X (n - 1) matrix B, must be a productive Leontief matrix and,
bence, have a positive determinant. Moreover, (f,, ..., p,.) - B
= =P .b%=0 implies that B% must also be a productive Leontief
matrix. Notice too that the homogeneity of degree zero of f{p, r) implies
that

D,flp,F)p+ D.f(p,F)i = 0.

Now multiplying each row, i = 1, . .. »#t = 1 of the matrix by p, adding it to
row n muitiplied by p,, then dividing row by 7, we see that

. ) . * * B
-D\f(p,7) BJz ! S DARA O
det[_ 5T 0 7 det By B ng(p,r) (()}

A

= (P“:Pn )(15- Do f(#, A)(det[Bi])(det[B]),

whose sign depends solely on that of 5- D, f( p, 7). (The elements marked *
in the matrix are of no consequence.) Our uniqueness condition is that a
weighted sum of income effects be positive, where the weights are the effi-
ciency prices uniquely determined by the production technology. To sce
that this condition is violated by the example of the previous section, we
use

. 9 -1
(5, p, ﬁs}',:"l 3}=[0 0]
-2 -2

and the price normalization 22.5=1 to calculate (Br» Do Py) =
(0.1481, 0.3704, 6-5185) We then calculate

e
f}.}g‘ L
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6
15 B2 Bs]- D:f(E, #) = [0.1481 03704 0.5185] | -3 | = —0.2222.
0

6 Concluding Remarks

Given the importance of the topic, it is not surprising to find that a large
amount of effort has gone into developing conditions that guarantee
‘uniqueness of general equilibrium. Unfortunately, the conditions devel-
oped so far are probably too restrictive to be immediately relevant for
applied work. In particular, there has been too little effort devoted to
research on uniqueness in production economies, and there has been even
less effort devoted to research on uniqueness in economies with distor-
tionary taxes. *

Applied models usually involve productions, distortionary taxes and tar-
iffs, and even more features that complicate the uniqueness issue. Models
of international trade, for example, often include increasing returns and
imperfect competition (see Kehoe and Kehoe 1995 for a survey).
Mercenier (1995) reports a problem with non-uniqueness of equilibrium in
such an applied model designed to analyze economic integration in Europe.

Increasingly, applied models are also including time and uncertainty in
such a way that, at least in principle, there are infinitc numbers of goods.
(In practice, these models are often truncated and solved on a computer.)
Unlike economies with finite numbers of goods, which almost always have
a finite number of equilibria, there are robust examples of economies with
infinite numbers of goods that have continua of equilibria. Kehoe and
Levine (1985, 1990) discuss this indeterminacy of equilibrium and show its
relationship to sensitivity to terminal conditions in truncated versions of
such economies. Furthermore, Kehoe, Levine, and Romer (1992) show
that even in economies where there are usually a finite number of equilib-
ria — such as economies with a finite number of consumers ~ the addition
of distortionary taxes or externalities can lead to robust indeterminacy.

Economies with time and uncertainty that have infinite numbers of
goods clearly present another set of issues that need to be studied. There is
some hope, however, that many of the results developed for models with
infinite numbers of goods may be relevant. Kehoe, Levine, Mas-Coleli,
and Woodford (1991), for example, find that gross substitutability has
strong implications for uniqueness in exchange economies with infinite
numbers of goods. It would be interesting to sce if results like that of Mas-
Colell (1991) on the equilibrium in factor markets of a generalized
input-output model in which all utility functions and production functions
are super-Cobb-Dougias can be extended to economies with infinite num-
bers of goods.

There is one result in Kehoe, Levine, Mas-Colell, and Woodford (1991)
that is so simple and powerful that it is worth giving here. Suppose that
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fpi, p2--) i=1,2, ..., is the excess demand function for an economy
with an infinite number of goods. We assume that f{ p) is homogeneous of
degree zero and obeys a version of Walras’s law that says that p - Ap)=0
whenever p - w < s, where w = (w), w,,...) is the aggregate endowment
vector. (We interpret inner products like p - w to be

r
p-w=lim Z D)
e

Assume that f(p) exhibits gross substitutability: if p = ¢ and p, = g, for
some i, then f(p) = f(q), and if f{p) = f(g), then p = q. Suppose that
there exists p such that f{$) = 0 and p - w <. Then p is the unique equi-
librium of f{ p).

To see why this is so, assume that f(p)=f(g) =0 and p-w<es.
Normalize prices so that p, = g, = 1, and define a new price sequence
P =Py, pr, ...) by setting p, = min(p,, ¢,) for all i. If 5, = p,, then gross
substitutability implies that f(5) = f(p) = 0. Similarly, if p, =g, then
f(P)=f(q)=0. Therefore f(p)=0. Furthermore, since p = p,
P-w=p-w<e. Consequently, Walras’s law implies that 7 - f(p) =0,
which implies that f{7) = 0. Gross substitutability now implies that p = p
and that p = q.

Kehoe, Levine, Mas-Colell, and Woodford (1991) present further
results for economies like overlapping generations economies, where there
need not be any equilibrium that satisfies p - w < == and where, because of
fiat money, the excess demand function need not obey Walras’s law. Even
in these economies, gross substitutability has strong implications.

At the same time that we extend the analysis of uniqueness to more
general economies, we need to develop new techniques. The index theo-
rem seems to be the most general tool available, but so far it has been
mostly used to generalize previously known results and to generate coun-
terexamples. It needs to be put to better use.

One direction to go in would be to use regularity theory to develop con-
ditions dealing with the distance between economies. Not only do we
know that if a regular production economy has an aggregate demand func-
tion that satisfies the weak axiom, then it has a unique equilibrium, for
example; we also know that if another economy is close enough to it, then
it too has a unique equilibrium. Similarly, if the tax distortions are small
enough in an economy that otherwise satisfies conditions that guarantee
uniqueness, then it has a unique equilibrium.

Another approach to studying the uniqueness question especially rele-
vant in applied work would be to develop algorithms capable of checking
if a given equilibrium is unique. Garcia and Zangwill (1981: ch. 18) discuss
a method that is based on approximating the function g{ p) whose fixed
points are equilibria by a polynomial function and that is capable, at least
in principle, of calculating all equilibria (for discussion and references, see
Kehoe 1991). Dakhlia (1995) presents some preliminary economic applica-
tions. This too is an area that deserves more research. N
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